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A New Entropy Coding Technique
for Data Compression

A. B. Kiely1 and M. Klimesh1

We present a novel entropy coding technique that is based on recursive inter-
leaving of variable-to-variable-length binary source codes. An entropy coder using
this technique is a general purpose module that can be used in a wide variety
of data compression algorithms. The encoding process is adaptable in that each
bit to be encoded has an associated probability-of-zero estimate that may depend
on previously encoded bits. This adaptability allows more efficient compression,
and the technique has speed advantages over arithmetic coding, the state-of-the-
art adaptable entropy coding method. The technique can achieve arbitrarily small
redundancy. Much variation is possible in the choice of component codes and in
the interleaving structure, yielding coder designs of varying complexity and com-
pression efficiency. We discuss coder design and performance estimation methods.
We present practical encoding and decoding algorithms, as well as measured per-
formance results.

I. Introduction

In data compression algorithms, the need frequently arises to compress a binary sequence in which
each bit has some estimated distribution, i.e., probability of being equal to zero. If long runs of bits have
nearly identical distributions, then simple source codes, most notably Golomb’s runlength codes [8,9], are
quite efficient. However, in many practical situations, not only does the distribution vary from bit to bit,
but it is desirable to have the estimated distribution for a bit depend on the values of earlier bits.

Allowing the estimated distribution to change with each new bit can result in more efficient compression
because a source model can make better use of the immediate context in which a bit appears and can
quickly adapt to changing statistics. For example, when compressing a bit plane of a wavelet-transformed
image, one would want to use an entropy coder that can efficiently encode a bit sequence with a probability
estimate that varies from bit to bit.

Accommodating a dynamically changing probability estimate is tricky because the decompressor will
need to make the same estimates as the compressor. In general, before the ith bit can be decoded,
the values of the first i − 1 bits must be determined. This requirement makes it difficult to efficiently
use simple source codes such as runlength codes. To our knowledge, currently the only efficient coding
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methods that accommodate a bit-wise adaptive probability estimate are arithmetic coding2 [12,14,19]
and a relatively obscure technique called interleaved entropy coding [2,5–7].

In this article, we introduce a new technique called recursive interleaved entropy coding, which is a
generalization of interleaved entropy coding. A recursive interleaved entropy coder compresses a binary
source with a bit-wise adaptive probability estimate by recursively encoding groups of bits with similar
distributions, ordering the output in a way that is suited to the decoder. Much variation is possible in the
choice of component codes and in the interleaving structure, yielding coder designs of varying complexity
and compression efficiency.

As an indication of the interest in low-complexity encoding and decoding of sequences with adaptive
probability estimates, we note that much effort has been put into reducing the complexity of arithmetic
coding; see [3,4,15–23]. These complexity reductions generally involve the use of judicious approximations
and typically result in a slight decrease in compression efficiency.

The functionality of our coding technique is essentially the same as that of binary arithmetic coding
[10–14]; however, our coder is not an arithmetic coder, and there are many practical differences. Arith-
metic encoding of one bit requires a few arithmetic operations and usually at least one multiplication.
Our encoder requires no arithmetic operations except those that might be needed to choose a code index
based on the estimated bit distribution; however, it requires some bookkeeping and bit manipulation op-
erations. Our encoder requires more memory than arithmetic coding. Arithmetic decoders are generally
of similar complexity to the encoders, but our decoder is much simpler than our encoder: it needs fewer
operations than the encoder and requires only a small amount of memory. In a related article [1], we
describe modified encoding and decoding techniques with lower encoder memory requirements.

In the remainder of this section, we give a brief overview of the entropy coding technique. Section II
describes the details of encoder and decoder operation and presents practical encoding and decoding
algorithms. In Section III we examine a class of binary trees that appears to be well suited for use in
coder designs. Section IV gives methods for estimating the performance of a given coder design. In
Section V we describe a technique for designing an encoder that meets a given redundancy constraint.
Section VI provides performance results. Finally, Section VII provides a conclusion and identifies some
open problems.

A. The Source Coding Problem

We examine the problem of compressing a sequence of bits b1, b2, · · · from a random source. For each
source bit bi we have a probability estimate pi = Prob[bi = 0] that may depend on the values of the
source sequence prior to index i and on any other information available to both the compressor and
decompressor. This dependence encompasses both adaptive probability estimation as well as correlations
or memory in the source. Because of this dependence, efficient coding requires a bit-wise adaptable coder.
We are not concerned here with methods of modeling the source, and so we make no distinction between
the actual and estimated probabilities.

Without loss of generality, we assume that pi ≥ 1/2 for each index i. If this were not the case for some
pi, we could simply invert bit bi before encoding to make it so; this inversion can clearly be duplicated in
the decoder.

We also assume that the decompressor can determine when decoding is complete. In practice, this
often occurs automatically; otherwise, a straightforward method such as transmitting the sequence length
prior to the compressed sequence can be used.

2 We include in the family of arithmetic coders assorted approximate arithmetic coders such as the quasi-arithmetic coder
of [4] and the Z-coder [3].
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Although we only discuss the compression of binary sequences, given any nonbinary source, we can
assign prefix-free binary codewords to source symbols to produce a binary stream. Thus, a bit-wise
adaptable coder such as the one we describe here can be applied to nonbinary sources as well.

B. The Recursive Interleaved Entropy Coder Concept

We now give an overview of how our entropy coding technique works. To simplify the explanation, we
defer some of the details until Section II.

Since, by assumption, each bit has probability-of-zero at least 1/2, we are concerned with the prob-
ability region [1/2, 1]. We partition this region into several narrow intervals, and with each interval we
associate a bin that will be used to store a list of bits. When bit bi arrives, we place it into the bin
corresponding to the interval containing pi. Because each interval spans a small probability range, all
of the bits in a given bin have nearly the same probability-of-zero, and we can think of each bin as
corresponding to some nominal probability value.

Bits in the leftmost bin, whose interval contains probability 1/2, do not require further processing. For
every other bin, we specify an exhaustive prefix-free set of binary codewords. When the bits collected in a
bin form one of these codewords, we delete these bits from the bin and encode the value of the codeword
by placing one or more new bits in other bins.3 In effect, bits in a bin are encoded using a prefix-free
variable-to-variable-length code, with the added twist that the output bits are assigned to other bins
where they may be further encoded.

The mapping from codewords to encoded bits is conveniently described using a binary tree. Each
codeword is assigned to a terminal node in the tree; non-terminal nodes are labeled with a probability
value that determines a destination bin; and the branch labels (each a zero or one) indicate the output
bits that are placed in the destination bins. For example, Fig. 1 shows a tree that might be used for a
bin with nominal probability 0.9. The prefix-free codeword set for this bin is {00, 01, 1}, shown as labels
of the terminal nodes in the tree. If the codeword to be processed in the bin is 00, which occurs with
probability approximately 0.81, we place a zero in the bin that contains probability 0.81. If the codeword
is 1, first we place a one in the bin containing probability 0.81, which indicates that the codeword is
something other than 00; then we place a zero in the bin containing probability 0.53 because, given that
the codeword is not 00, the conditional probability that the codeword is 1 is approximately 0.53. We can
see that this process contributes to data compression because the most likely codeword is 00, which is
represented using a single bit.

Bits that reach the leftmost bin form the encoder’s output; we refer to this bin as the “uncoded” bin
since these bits do not undergo further coding. These bits are zero with probability very close to 1/2 and
are thus nearly incompressible, so leaving these bits uncoded does not add much redundancy.

0.53

010.81

00

1

1

0

0

1

Fig. 1.  Example of a tree for
a bin with representative
probability 0.9.

3 The rules for collecting bits to form a codeword are not straightforward, and we save the details for Section II.B.
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During the encoding process, bits arrive in various bins either directly from the source or as a result of
processing4 codewords in other bins. Our goal is to have bits flow to the leftmost bin. To accomplish this,
we impose the constraint on the non-terminal node labels that all new bits resulting from the processing
of a codeword must be placed in bins strictly to the left of the bin in which the codeword was formed.
Apart from our desire to move bits to the left, this constraint also prevents encoded information from
traveling in loops, which would make coding difficult or impossible.

As illustrated in the example above, a natural method of mapping output bits to bins is to assign each
output bit of a codeword to the bin indicated by the output bit’s probability-of-zero, as computed from
the nominal probability of the bin in which the codeword is formed. If we use this method, then a bin
with nominal probability p must necessarily use a tree that is “useful” at p according to the following
definition.

Definition.

(1) We say that a tree is useful at probability p if it has the property that, when all input bits
have probability-of-zero equal to p, all output bits have probability-of-zero in the range [1/2, p).

(2) A tree is useful if there exists some p for which the tree is useful at p.

(3) If the branches of a tree lack output bit labels, then we say that the tree is useful (respec-
tively useful at probability p) if some assignment of output bit labels makes the tree useful
(respectively useful at probability p).

Perhaps surprisingly, requiring output bits to be mapped strictly to the left turns out to be a reasonable
constraint—we’ll see in Section III.A that for any p ∈ (1/2, 1) there exists a tree that is useful at p.

In practice, bins are identified by indices rather than nominal probability values, starting with index 1
for the leftmost bin. At each non-terminal node in a tree, we identify the index, rather than the nominal
probability value, of the bin to which the associated output bit is mapped. The constraint on encoder
design is now that each output bit from the tree for a bin must be mapped to a bin with strictly lower
index. No computations involving probability values are needed for encoding apart from those that may
be required to map input bits to the appropriate bins.

The mapping of output bits to bins can be designed without regard for nominal probability values,
so it is possible to design working coders that include trees that are not useful. In fact, good coders
can be designed that do not contain useful trees. However, one expects better compression if output bit
probabilities are in close agreement with their destination bins’ nominal probabilities; this appears to be
most easily achieved by exploiting useful trees.

Near the end of encoding of a sequence of bits, there may be bins that contain partial codewords that
must be “flushed” from the encoder. When this occurs, we append one or more extra bits to the partial
codeword to form a complete codeword that is then processed in the normal manner. Section II.C gives
more details about flushing the encoder.

Clearly the encoder’s output contains some redundancy because source bits with slightly different
probabilities-of-zero are treated the same; that is, the bins’ intervals have positive widths. As one might
expect, by increasing the number of bins in the coder design, we can decrease the redundancy to arbitrarily
small values. This result is formalized in Section III.B.

4 We refer to the encoding of a codeword in a bin as “processing” the codeword, rather than “encoding,” to avoid confusion
with the overall encoding procedure.
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C. Relation to Interleaved Entropy Codes

An important special case of our entropy coder arises when all output bits generated from each tree
are mapped to the uncoded bin. In this case, the coder essentially interleaves several separate variable-
to-variable-length binary codes. This technique was first suggested in [6], where Golomb codes are
interleaved, and has also appeared in [7]. Howard [5] gives a more thorough analysis of this technique,
which we refer to as non-recursive interleaved entropy coding. A non-recursive coder design allows
reduced-complexity encoding; in Section VI, we show that in fact non-recursive coders can achieve very
high encoding speeds.

By using an increasing number of increasingly complex variable-to-variable-length codes, it’s clear
that we can make asymptotic redundancy arbitrarily small with a non-recursive coder (provided that the
estimates of the source distribution can be made arbitrarily accurate). With the additional flexibility
of the recursive technique presented here, a given redundancy target tends to be achievable with fewer
and/or simpler codes.

II. Encoding and Decoding

Section I gave an overview of how recursive interleaved entropy coding works. In this section, we
describe the encoding and decoding procedures in more detail and give practical algorithms for encoding
and decoding.

It should be noted that the encoding algorithm presented here requires memory resources that are
proportional to the length of the source bit sequence. Alternative encoding algorithms (with corresponding
decoding algorithms) that have much more modest memory requirements are described in [1].

We first state more precisely how a coder is specified. A recursive interleaved entropy coder specifica-
tion consists of

(1) An integer B indicating the number of bins. The bins are indexed from 1 to B.

(2) For each bin with index greater than 1, an exhaustive prefix-free set of binary codewords and
a binary tree that describes rules for processing each codeword by placing one or more bits in
lower-indexed bins.

(3) A rule for mapping source bits to bins.

While we usually think of each bin in the encoder as corresponding to some probability interval, such
a relationship is not required, and there need not be any implicit probability estimate used to map bits
to bins.

Since we are not concerned with source modeling, we will frequently present coder designs without
specifying a rule for mapping source bits to bins. In this case, we assume that each source bit is mapped
to the bin that minimizes redundancy given the source bit probability-of-zero pi.

As a running example to illustrate the encoding and decoding procedures, we use a 5-bin coder design
that we refer to as C5. This coder design is illustrated in Fig. 2, where the trees shown identify the
relationship between codewords and output bits. For example, Fig. 2(c) indicates that if codeword 01 is
formed in bin 4, then we place bits 1,0,1 in bins 3,2,1, respectively.

To illustrate encoding and decoding using coder design C5, we also need a rule to assign a bin index to
each source bit. For the examples in this section, we’ll let this bin index equal one more than the number
of zeros in the four most recent source bits (or in all of the preceding source bits when there are fewer
than four of them). This is not a rule one would likely use in practice, but it is convenient for illustrative
purposes.
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Fig. 2.  The 5-bin coder design C5:  (a) bin 2, (b) bin 3, (c) bin 4, and (d) bin 5.  Output bits are shown in
boldface; the corresponding bin indices are in italics.  The input codewords are shown at terminal nodes of the
trees.  The first bin of a coder design does not have an associated tree.
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A. Decoder Operation

We first describe the decoding procedure since it determines how encoding must be performed. We
regard each bin in the decoder as containing a list of bits. To begin, all of the encoded bits are placed in
the first (uncoded) bin, and all other bins are empty. At any time, each nonempty bin (with the exception
of the uncoded bin) will contain a single codeword or a suffix of a codeword. To decode a source bit,
we take the next bit from the bin to which the source bit was assigned. If this bin is empty, we first
reconstruct the codeword in that bin by taking bits from other bins as needed. This in turn may require
reconstructing codewords in those bins, and so on.

Example 1. Suppose a 4-bit source sequence is encoded using coder design C5 and the encoder output
is 0, 1, 1, 1, 0, 0. To decode, first we place the encoded bits in the first bin. From our bin assignment rule,
the first source bit came from bin 1, so our first output bit equals the first encoded bit, which is a zero.
Our decoder state now looks like this:

1 2 3 4 5

0

1

1

1

0

0

decoded sequence = 0

Since the decoded bit sequence consists of a single zero, our bin assignment rule tells us that the next
source bit comes from bin 2. This bin is empty, so we must reconstruct a codeword in the bin. Examining
the tree for bin 2, we see that the possible codewords are 00, 01, and 1, which produce 0, 11, and 10,
respectively, in bin 1. Since the next bits in bin 1 are 11, we delete these bits and place codeword 01 in
bin 2. The first bit of this codeword is the next source bit, so we output a zero and delete this zero from
bin 2:

1

0

1 2 3 4 5

1

1

0

0

decoded sequence = 0,0

1

0

According to our bin assignment rule, the next source bit was placed in bin 3. Examining the tree for
bin 3, we see that the 1 in the second bin indicates that the codeword was either 01 or 1, and the 1 in
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the first bin signals that the codeword was 01, so we place the codeword 01 in the third bin, removing
the bits from bins 1 and 2 as they are used. The first bit from this codeword is our next source bit, so
we delete it:

0 0 0

1

1

1 1

1 2 3 4 5

0

0

decoded sequence = 0,0,0

1

Since the first three bits are 0, 0, 0, the fourth and final bit comes from the fourth bin. Following the
tree for bin 4, we see that the 1 in bin 3 indicates that the codeword in bin 4 is 001, 01, or 1. To determine
which it is, we must take a bit from bin 2, which is empty. So we must first reconstruct a codeword in
bin 2. Following the tree for bin 2, the 0 in bin 1 tells us to place the codeword 00 in bin 2. Now we can
continue reconstructing the codeword in bin 4. The 0 in bin 2 indicates that the codeword in bin 4 is
either 01 or 1, and the 0 in bin 1 tells us that the codeword in bin 4 is 1. (As usual, bits are deleted as
they are used.) The 1 reconstructed in bin 4 is the fourth decoded bit:

0

1

1

1 1 1

100

0
0

0

1 2 3 4 5

decoded sequence = 0,0,0,1
0

The final decoded sequence is 0, 0, 0, 1. We observe that an unused 0 bit remains in bin 2. This bit
was added during encoding to flush a partial codeword from bin 2; it is ignored in decoding. 4

Software decoding can be accomplished using two recursive procedures, GetBit and GetCodeword,
shown in Fig. 3. GetBit simply takes the next available bit from the indicated bin. If this bin is empty,
then it first calls GetCodeword. Given an empty bin, GetCodeword determines which codeword must have
occupied the bin by taking bits from other bins (via GetBit), and then places that codeword in the bin.
The GetCodeword procedure is similar to Huffman decoding, except that at each step we take the next
bit from the appropriate bin, not (necessarily) from the encoded bit stream.

To decode the ith source bit, let binindex equal the index of the bin to which this source bit is
assigned according to the bin assignment rule for the coder. Then the ith decoded bit is equal to
GetBit(binindex).

B. Encoder Operation

The encoding procedure outlined in Section I.B illustrated the codeword processing operations involved
in encoding, but did not discuss the order in which bits are collected to form codewords. This order is
important; we must encode in a way that allows the decoder to determine the value of source bit bi−1

before attempting to decode source bit bi, since the bin to which a source bit is mapped may depend on
the values of previous source bits.
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GetBit(binindex):

(1) If the bin with index binindex is empty, then call GetCodeword(binindex).

(2) Remove the first bit in the bin with index binindex and return the value of this bit.

GetCodeword(binindex):

(1) Initialize nodepointer to point to the root of the tree for the bin with index binindex.

(2) While nodepointer is not pointing to a terminal node, do the following:

(a) Let thisbinindex equal the bin index indicated by the node at nodepointer.

(b) Assign bitvalue = GetBit(thisbinindex).

(c) Let nodepointer point to the node indicated by the branch with label equal to bitvalue.

(3) At this point nodepointer points to a terminal node, which means that we have reached a
codeword. Place this codeword in bin binindex.

Fig. 3. The GetBit and GetCodeword procedures used for recursive decoding.

In practice, the order in which bits are collected to form codewords is specified somewhat indirectly.
During encoding, each bin is viewed as containing a list of bits, but when a bit arrives in a bin as an
output bit from another bin, the bit might be inserted into the list at a position other than the end of
the list. In this section, we give encoding rules that specify when we can process a codeword formed by
the bits at the beginning of a bin’s list and at what positions in the destination bins’ lists to insert the
bits produced by processing the codeword. We also give practical encoding algorithms that conform to
these rules.

The rules are described using an ordering of all bits in the encoder. We refer to this ordering as the
“priority” order of the bits; for source bits, it corresponds to the order in which bits arrive (earlier bits
have higher priority), and when encoding is complete the encoder output consists of the bits in bin 1 in
priority order.

The following list summarizes the priority rules:

(1) Source bit bi−1 has higher priority than source bit bi.

(2) Bits taken from a bin to form a codeword must be taken in priority order. The encoder output
(i.e., the bits that fall in the uncoded bin) must be read in priority order.

(3) When a codeword is formed, the resulting output bits are assigned priority essentially equal
to the highest priority of the bits forming the codeword. Among these output bits, those
generated closer to the root of the tree are assigned higher priority.

(4) We cannot process a codeword if a bit with higher priority than the lowest priority bit in the
codeword might enter the codeword’s bin.

(5) Flush bits can be added to complete a partial codeword in a bin only if no other bits can
enter the bin.

Part of the idea behind Rule (3) is that, when the decoder reconstructs codewords, it needs the values
of bits generated closest to the root of the tree first. For example, suppose we formed the codeword 001
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in bin 4 of an encoder using coder design C5. In this case, the output bits produced are 1,1 in bins 3,2.
The bit placed in bin 3 must have higher priority, because the decoder will not know whether a bit was
placed in bin 2 until it reads the value of the bit in bin 3.

Rule (4) implies that even when bits in a bin (taken in priority order) form a codeword, we may not
be able to process the codeword. For example, suppose that the first three input bits to an encoder using
coder design C5 are 0, 0, and 1 and are placed in bins 3, 4, and 3, respectively,5 so that our encoder state
looks like this:

1 2 3 4 5

0 (1) 0 (2)

1 (3)

Here the bit index is written in parentheses after the bit value. Although the bits in bin 3 form a
codeword, we cannot yet process this codeword because the formation of a codeword in bin 4 will result
in a bit entering bin 3, which will break up the codeword in that bin.

There is more than one encoding method that conforms to the priority rules. Variations in the
specific encoder implementation amount to changing the order in which certain processing operations are
performed and using different methods for identifying codewords to be processed. All encoding methods
that conform to the priority rules yield the same encoded bit stream, apart from differences arising due
to different choices of flush bits.

To illustrate the priority rules, we can assign a label to each bit that indicates its priority. These
priority labels are numbered like sections in a paper. Each source bit has a label equal to its position in
the source sequence, and when a codeword is formed, the resulting output bits are given labels as though
each were a “subsection” of the highest priority bit label appearing in the codeword.

Example 2.

(a) The ninth bit in a source sequence has priority label “9.”

(b) A bit with priority label “3.4.2” has higher priority than a bit with label “4.1.1.2,” just as
section 3.4.2 would appear in a paper before section 4.1.1.2.

(c) Suppose a codeword is formed from bits with priority labels 5.1 and 9.1.2. If this codeword
produces three output bits, then these bits have labels 5.1.1, 5.1.2, and 5.1.3, with higher
priority labels assigned to bits generated closer to the root of the tree. 4

According to our coder design rules, each output bit from a bin is mapped to a bin with lower index.
Thus, Rule (4) allows us to process a codeword in a bin if the last (i.e., lowest-priority) bit in the codeword
has higher priority than any bit in any higher-indexed bin. A simple way of guaranteeing this condition
is to first place all source bits in the appropriate bins, then process codewords starting with those in the
highest-indexed bin and working toward bin 1, so that each time we begin to process codewords in a bin,
all bins with a higher index are empty. At each step we identify the nonempty bin with the largest index
and we take bits (in priority order) from this bin until we have formed a codeword, appending flush bits
if needed to complete the final codeword of the bin.

The following example illustrates this encoding procedure. (Shortly we will describe an alternative
technique.)

5 We assume for the sake of this example that source bits are assigned to bins using a rule different from the one used
previously.
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Example 3. We use coder design C5 to encode the sequence 0, 0, 0, 1, which is the sequence just
decoded in the previous section. First we place the input bits in the appropriate bins, according to our
rule for assigning bin indices to input bits. We write the priority label of each bit in parentheses.6

1 2 3 4 5

0 (1) 0 (2) 0 (3) 1 (4)

Next, we process codewords, starting at the highest-indexed nonempty bin. In this case, bin 4 contains
a single bit that is in fact a codeword. From the tree for bin 4, we see that we should put bits 1,0,0 in
bins 3,2,1, respectively. These bits are assigned labels 4.1, 4.2, 4.3, respectively. The encoder state now
looks like this:

1 2 3 4 5

0 (1) 0 (2) 0 (3) 1 (4)

0 (4.3) 0 (4.2) 1 (4.1)

Next we process codewords in bin 3. Bin 3 contains 01, which (from the tree for bin 3) forms a
codeword and produces ones in bins 2 and 1. Since the highest-priority bit in the codeword has priority
label 3, the output bits are assigned labels 3.1 and 3.2, respectively, and are inserted in priority order in
bins 2 and 1:

1 2 3 4 5

0 (1) 0 (2) 0 (3) 1 (4)

1 (3.2) 1 (3.1) 1 (4.1)
0 (4.3) 0 (4.2)

In bin 2 we find the codeword 01, which produces a pair of ones in the first bin. The highest-priority
bit in the codeword has label 2, so the output bits are labeled 2.1 and 2.2:

1 2 3 4 5

0 (1) 0 (2) 0 (3) 1 (4)

1 (2.1) 1 (3.1) 1 (4.1)
1 (2.2) 0 (4.2)

1 (3.2)

0 (4.3)

Next, in bin 2 we have a 0 that is not a complete codeword, so we must add one or more flush bits to
complete the codeword. Flush bits can be assigned priority label ∞, and any choice of flush bits that
forms a complete codeword will produce a decodable sequence. In this case, we choose to append a 0, as
this results in a codeword that produces a single output bit. The codeword now formed, 00, results in a
0 with label 4.2.1 in bin 1:

6 It is a coincidence that in this case the input bit priority labels happen to equal the bin indices.
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1 2 3 4 5

0 (1) 0 (2) 0 (3) 1 (4)

1 (2.1) 1 (3.1) 1 (4.1)
1 (2.2) 0 (4.2)

1 (3.2)

0 (4.2.1)

0 (∞)

0 (4.3)

At this point all bins except bin 1 are empty, so encoding is complete. Reading the bits in bin 1 in
priority order, we see that the output sequence is 0,1,1,1,0,0, which was the input sequence to the decoder
in the decoding example of the previous section. 4

For encoding in software, rather than assigning priority labels to each bit, we maintain a linked list
of bit values sorted in order of priority. Each record in the list stores a bit value and the index of the
bin that contains the bit. Initially the list contains the entire input sequence in order of arrival. When a
codeword is processed, we delete the bits that formed the codeword and insert the resulting output bits
in the list at the location of the first bit in the codeword.

For example, suppose an encoder using design C5 has its linked list in the state shown in the left half
of Fig. 4. The largest bin index in this list is 4, so we search through the list for bits in bin 4 until we
form the codeword 01. This codeword produces output bits 1,0,1 in bins 3,2,1, respectively; the new state
of the linked list is shown in the right half of Fig. 4. When all bits are in the first bin, the encoder output
consists of these bits in priority order.

Instead of processing all codewords in the highest-indexed nonempty bin before moving to the next
bin, we may use a recursive encoding variation that uses an alternative method of identifying codewords
for processing, outlined in Fig. 5. The recursive MakeCodeword procedure of Fig. 5 forms and processes
a codeword starting with a given bit. To do this, it scans through the bits in priority order to form
a codeword, and forms and processes codewords in higher-indexed bins as needed. The procedure re-
turns a pointer to the highest-priority output bit produced. In our experience, this recursive encoder
implementation is faster than processing codewords in decreasing order of bin index.
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Fig. 4.  One step of software
encoding using coder design
C5. In each pair, the left
(unshaded) box indicates bit
value; the right (shaded) box
shows bin index.
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Encode:
initialization: load all source bits (with bin indices) into memory

while (memory is not empty)
let bitpointer point to the highest priority bit in memory
while (bin(bitpointer) 6= 1)

let bitpointer = MakeCodeword(bitpointer)
remove and output the bit indicated by bitpointer

MakeCodeword(bitpointer):
thebin = bin(bitpointer)
bitstring = bit(bitpointer)

while (bitstring is not a complete codeword)
if bitpointer points to the lowest priority bit in memory

append flush bits as needed to make bitstring a complete codeword
else

assign bitpointer to the bit with next lower priority

while (bin(bitpointer) > thebin)
bitpointer = MakeCodeword(bitpointer)

if (bin(bitpointer) = thebin)
append bit(bitpointer) to bitstring

delete from memory the bits that formed bitstring

insert the corresponding output bits at the position occupied by the first bit in bitstring

return a pointer to first output bit generated.

Fig. 5. Outline of an encoder implementation using the recursive MakeCodeword procedure.

C. Assigning Flush Bits

We now turn to the task of assigning flush bits when needed to complete the last codeword in a
bin. When they are required, any choice of flush bits that forms a complete codeword will produce a
decodable sequence. The decoder does not need to know the encoder’s method of selecting flush bits—
they are simply the bits remaining in the decoder after decoding is complete. This means that decoder
speed is essentially unaffected by whether the encoder uses a quick or a highly optimized method to
choose such bits.

We would like to choose flush bits in a way that minimizes the length of the encoded sequence. In
general, however, this is not easy to do; in particular, the optimal assignment of flush bits in a given bin
may depend on the contents of lower-indexed bins. For example, suppose the trees for bins 2 and 3 of a
coder design are as shown in Fig. 6. If after processing as many complete codewords as possible we are left
with a 0 in bin 3, and all other bins (except bin 1) are empty, then it is easily checked that we minimize
encoded length by adding flush bits 00 in bin 3. On the other hand, if the encoder state includes a 0 in
bin 3 as before, but now also includes a higher priority 0 in bin 2, then this time the encoded length is
minimized by putting a 1 in bin 3. In fact, determining the optimal choice of flush bits could be much
more complicated; for example, there could be a large number of bits in bin 2 while bin 3 contains a bit
with higher priority.
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Fig. 6.  Trees in a coder design illustrating the potential difficulty in
optimally assigning flush bits:  (a) bin 2 and (b) bin 3.

Thus, it apparently is difficult in general to optimally assign flush bits. Fortunately, the greedy
assignment rule described below seems to produce an encoded length that is at worst only a few bits
longer than the length obtained from optimal flush-bit assignment.

A greedy assignment selects flush bits to clear a given bin without regard for the contents of lower-
indexed bins. Under this approach, we can compute flush-bit assignments in advance for each prefix of a
codeword in each bin, and assign flush bits during encoding using a look-up table.

We now outline the greedy flush-bit assignment rule used for the simulations in this article. For each
bin we identify a nominal probability value that closely matches the probability values of bits we expect
to enter the bin. In a well-designed coder, a bit placed in a bin with nominal probability χ will ultimately
result in a number of encoded bits approximately equal to

{
− log2 χ, if the bit is a 0
− log2(1− χ), if the bit is a 1

For each codeword associated with a bin, we determine the corresponding output bits and associated
bins and estimate the expected number of encoded bits using the above approximation. We think of this
quantity as the “cost” of the codeword. Given a codeword prefix in a bin, we select the flush bits to
minimize the cost of the codeword formed.

This greedy assignment rule is optimal for any bin that maps all output bits to the uncoded bin.
This happens, for example, for the second bin in a recursive encoder, and for all bins in a non-recursive
encoder. This method often, but not always, amounts to appending zeros to the partial codeword until
a codeword is formed.

III. Useful Trees

Recall from Section I that a tree whose branches lack output-bit labels is useful at probability p if some
assignment of output-bit labels results in all output bits having probability-of-zero in the range [1/2, p)
when the input bits all have probability-of-zero equal to p.

From the overview of coder operation given in Section I, we expect a bin to be associated with some
probability interval, and we require that all output bits generated at a bin must be mapped to bins with
strictly lower indices, which we expect to be associated with smaller probability values. Thus, if there
are probability values for which useful trees do not exist, it may be difficult to produce coder designs
achieving very small redundancies.

Fortunately, it turns out that there is essentially no restriction on the probability values at which a
useful tree can be found. We will show that there exist families of trees such that, for any p ∈ (1/2, 1),

13



there is a tree in the family that is useful at p. We call such a family complete. A complete family of
trees is necessarily infinite.

In Section III.A we exhibit a complete family of trees. Section III.B presents a result that implies
that any complete family of useful trees can be used to design a coder that meets an arbitrarily small
redundancy target, provided that the source-bit probability-of-zero estimates are accurate. We give some
additional results about useful trees in Section III.C.

A. Useful Trees Exist Everywhere

We now describe a particular family of useful trees. For integers n > m ≥ 1, we form the tree Tm,n as
shown in Fig. 7.7 The assignment of output-bit labels that makes Tm,n useful at a given p depends on p,
and we discuss these labelings in Appendix A.

10

01
001

110

0n -21
0n -11

1m -20

0n

1m -10

1m(b)

01
001

0n -21
0n -11

0n

1
(a)

Fig. 7.  The tree Tm,n for (a) m = 1 and (b) m > 1.

The following theorem identifies the range of probability values p for which Tm,n is useful. We prove
an extended version of this theorem in Appendix A.

Theorem 1. For α ∈ [0, 1), let γα denote the root of p = (1− p)α that is in the range (1/2, 1]. Then,

(1) For m = 1 and n > m, Tm,n is useful in the interval (γm/n, 1).

(2) For n > m > 1, Tm,n is useful in the interval (γm/n, γ(m−2)/(n−2)).

Table 1 lists some values of γα. It is easily verified that γm/n decreases as m/n approaches 1, and the
following result implies that γm/n approaches 1/2 as m/n approaches 1.

Proposition 1. For n > m ≥ 1,

1
2
< γm/n <

(
1
2

)m/n

Proof. Let xm,n(p) = pn − (1− p)m, so that γm/n is the zero in (1/2, 1] of xm,n(p). Since xm,n(p) is
increasing over (0, 1), it is sufficient to show that xm,n(1/2) < 0 < xm,n

(
(1/2)m/n

)
. The first inequality

is immediate. To establish the second, note that 1− (1/2)m/n < 1/2, so that

7 The authors gratefully acknowledge Sam Dolinar for pointing out this generalization of the Tm,m+1 trees.
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Table 1. Some values of γα.

α γα

0 1

1/2
1

2

(√
5− 1

)
≈ 0.61803

2/3 0.56984

3/4 0.54970

4/5 0.53860

5/6 0.53156

6/7 0.52669

7/8 0.52312

xm,n

((
1
2

)m/n)
=
(

1
2

)m
−
(

1−
(

1
2

)m/n)m
>

(
1
2

)m
−
(

1
2

)m
= 0

❐

This result can be use to bound the rate at which γm/n decays to 1/2. In particular,

(
1
2

)m/n
− 1

2
=

1
2

(
e[(n−m)/n] ln 2 − 1

)

=
1
2

(
n−m
n

ln 2 +
1
2

(
n−m
n

ln 2
)2

+
1
3!

(
n−m
n

ln 2
)3

+ · · ·
)

≈
(
n−m
n

)
ln 2
2

where the approximation is valid if m/n is close to 1.

It is clear from Proposition 1 and Theorem 1 that the set of all Tm,n trees is complete. Furthermore,
for any fixed integer d > 0, the set {Tm,m+d}∞m=1 forms a complete family of useful trees. Figure 8
illustrates how the useful regions for the trees in the important family {Tm,m+1}∞m=1 span (1/2, 1).

......

(i +1) / (i +2) 1/2
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...

...

...

= 12/3
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Fig. 8.  Useful regions of trees in the family {  m,m +1}m =1.

(Not to scale.)

∞

......
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B. Application of Useful Trees to Coder Design

We noted in Section I.C that redundancy can be made arbitrarily small (subject to the accuracy
of the source distribution estimates) using non-recursive interleaved entropy coders; however, the codes
required quickly become complex. On the other hand, we saw in Section III.A that we can easily construct
a complete family of useful trees with manageable complexity. The following theorem establishes that
such a family of trees provides another method of producing coder designs achieving arbitrarily small
redundancy when we exploit recursion in the coder.

Theorem 2. Let U be a complete family of useful trees without output-bit specifications. Then for
any ε > 0 and δ > 0 there exists a coder design that uses only trees from U , and a constant c, for which
the following holds: For any n and any sequence of bits b1, · · · , bn whose associated probability-of-zero
estimates p1, · · · , pn are all in the range [δ, 1− δ], the coder will compress the sequence to at most

c+ (1 + ε)
n∑
i=1

{
− log2 pi, if bi = 0
− log2(1− pi), if bi = 1

}
bits (1)

This theorem is proved in Appendix B.

It should be emphasized that this theorem is not probabilistic and there need not be any relation
between the bit values and their probability-of-zero estimates. However, if, for example, we generate
independent random bits b1, · · · , bn and let pi = Prob[bi = 0], then the theorem implies that the expected
number of encoded bits per source bit can be made to approach the source entropy. Similar results
hold under more complicated assumptions, so long as the probability estimates are accurate for each bit.
Even if the estimates are not accurate, the sum in Eq. (1) represents, in a rather loose sense, the best
average encoded length achievable by a coder that relies on the estimates [11]. An ideal arithmetic coder
that uses the same probability estimates would produce encoded length slightly larger than the sum in
Expression (1).

Using Theorem 2, it can be shown that redundancy can be made arbitrarily small in other senses as
well. For example, assuming accurate probability estimates, the average number of bits of redundancy
per source bit can be made arbitrarily small without any restriction on the source-bit probabilities.

In the proof of Theorem 2, the coder design produced may have many more bins than necessary; no
attempt is made to keep complexity low. Section V.A presents a more practical procedure to design a
coder that meets a redundancy constraint using a small number of bins.

We use the following lemma in our discussion of a coder design algorithm in Section V.A. This lemma
implies that if a tree is useful at p and the tree is used with input bits having probability-of-zero p, then
the expected number of input bits in a codeword is greater than the expected number of output bits
produced by processing a codeword; thus, the tree contributes to data compression.

Lemma 1. Suppose a tree is useful at p. Let ηk(p) be the expected number of output bits produced at
node k per input bit when the input bits are independent and have probability-of-zero p. Then

∑
k

ηk(p) < 1 (2)

where the sum is over all non-terminal nodes of the tree.

Note that Expression (2) might hold even for a tree that is not useful at p.
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Proof. To calculate the entropy of a discrete probability distribution, we can assign each possible
outcome to a leaf of a binary tree. Then the grouping property of entropy allows us to calculate the
entropy of the distribution from the entropies associated with the individual binary decisions leading to
the leaves.

Here we consider the probability distribution on the input codewords given that input bits have
probability-of-zero p. Let H be the entropy of this distribution and let L be the expected input codeword
length. We use two binary trees associated with the distribution on the input codewords: the tree from
the input codewords themselves (in which the binary decisions are input bits) and the tree of the type
we use to describe coders, in which the binary decisions correspond to output bits.

For the first type of tree, the entropy of each binary decision is H2(p), where H2 is the binary entropy
function, and the expected number of decisions is L. Thus, we have

H = LH2(p)

For the second type of tree, let qk(p) denote the probability that an output bit from node k of the tree
is zero. Then the entropy of the binary decision at node k is H2(qk(p)), and the probability that this
decision is encountered in forming a codeword is Lηk(p). So in this case we have

H =
∑
k

Lηk(p)H2(qk(p))

where the sum is over all non-terminal nodes.

Equating the two expressions for H and dividing by L yields

H2(p) =
∑
k

ηk(p)H2

(
qk(p)

)
(3)

The fact that the tree is useful at p implies that H2(qk(p)) > H2(p) for each k, thus

H2(p) =
∑
k

ηk(p)H2

(
qk(p)

)
>
∑
k

ηk(p)H2(p)

and dividing by H2(p) yields Expression (2). ❐

C. Useful Trees and Practical Coding

There are many useful trees in addition to those described in Section III.A. In this section, we give
some examples of such trees and we provide a few results that might be useful in characterizing the class
of useful trees.

For p near 1, there are several useful trees that perform runlength coding and appear to be well suited
for use in practical coders. Figure 9 illustrates two such trees.

17



1

01
001

000000

0001

00001

000001

(a)

001

000000

0001

00001

000001

1

01

(b)

Fig. 9.  Examples of useful trees that perform runlength coding.  Tree (a) performs, essen-
tially, Golomb coding [8], and tree (b) is formed by rearranging the codewords of T1,6.

Two trees that are both useful in some common region can be combined to construct a new useful
tree. For example, T2,3 is useful for p ∈ (γ2/3, 1) and T1,2 is useful for p ∈ (γ1/2, 1). If we join T1,2 to
T2,3 at the terminal node of T2,3 corresponding to codeword 001, then we use this codeword as a prefix
of each codeword in tree T1,2. The resulting composite tree, shown in Fig. 10, is useful in the region
(γ2/3, 1) ∩ (γ1/2, 1) = (γ1/2, 1). Such composite trees do not appear to have any significant advantages
over their component trees.

10

000

01

11

00100

00101

0011

Fig. 10.  A composite useful tree formed
by combining the trees T2,3 and T1,2.

Useful trees can be combined in another manner to produce a second class of composite trees. Let Ta
be a tree that is useful at p and for which the output probability-of-zero from the root node is within the
useful region of a tree Tb. Suppose we form and process codewords with Ta until the output bits from the
root node form an input codeword for Tb, and then we process this codeword using Tb. This sequence
of operations is equivalent to forming and processing a codeword with a single larger tree that is derived
from Ta and Tb and is useful at p.

If the bits arriving in a bin are independent and identically distributed (IID), then exchanging the
positions of two codewords that have equal numbers of zeros and equal numbers of ones will have no
impact on compression efficiency.8 Thus, the resulting tree can be considered to be equivalent to the
original tree. Figure 11 shows an example of two equivalent useful trees.

10

000

01
001

11

01

000

10
001

11

Fig. 11.  Two equivalent useful trees.

8 Note, however, that bits arriving in a bin may not be IID even when the source bits are IID.

18



We have not found a simple characterization of the set of all useful trees. However, we have enumerated
all useful trees with seven or fewer terminal nodes. In Table 2 we list the number of useful trees with up
to seven terminal nodes when we eliminate the first type of composite trees and select a single tree from
each set of equivalent trees. Figure 12 shows the five useful trees with four terminal nodes.

Table 2. Number of useful trees with
n terminal nodes, excluding the first
type of composite trees and select-
ing a single member from each set
of equivalent trees.

Number of useful
n trees with n

terminal nodes

3 1

4 5

5 39

6 416

7 5368

001

000

01

1

01

000

001

1

1

000

01

001 1

000

01

001

01

000

1

001

(a) (b) (c) (d) (e)

Fig. 12.  The useful trees with four terminal nodes.  Tree (a) is useful in the range (0.755,1); trees (b), (c), and (d) are
useful in (0.682,1); and tree (e) is useful in (0.618,1).

It may be advantageous to consider trees formed from modifications to the Tm,n trees. For example,
starting from T2,3, we can extend the tree at the nodes corresponding to codewords 10 and 001 (essentially
by appending uncoded bits) and swap codewords 00100 and 1011 to arrive at the tree shown in Fig. 13.
This tree is useful over (γ2/3, 1), like T2,3, but over this region it tends to produce output bits with
probabilities-of-zero closer to 1/2. The much simpler modification of rearranging the codewords can
sometimes give a similar improvement.

000

01

11

100
1010

1011

0011
00101

00100

Fig. 13.  A useful tree formed by
extending T 2,3.
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IV. Estimating Compression Efficiency

In this section, we turn to the problem of quantifying the compression efficiency of a recursive inter-
leaved entropy coder. We would like to analytically determine the redundancy resulting from a given
coder design, but this depends on the source and does not appear to be easy to calculate exactly in
general.

One metric that gives a good indication of performance, and for which we can find reasonable estimates,
is the rate (the expected number of output bits per source bit) when the input to the encoder is an IID
stream of bits into bin j, each bit having probability-of-zero equal to p. We denote this quantity by Rj(p).

Because of the recursive nature of the encoder, our estimates of Rj(p) rely on rate estimates for other
bins. A given bin may have bits with different probabilities-of-zero arriving from higher-indexed bins. If
bin j has as input λ1 bits each with probability-of-zero q1 and λ2 bits each with probability-of-zero q2,
then the resulting contribution to the number of output bits might be approximated as

λ1Rj(q1) + λ2Rj(q2) (4)

or

(λ1 + λ2)Rj

(
λ1q1 + λ2q2

λ1 + λ2

)
(5)

The first approximation would tend to be more accurate when long runs of bits in bin j have the same
probability-of-zero, and the second would be more accurate if the two types of bits are well mixed.

In this section, we describe two techniques for estimating Rj(p) that are direct applications of the
respective approximations above. Extensions of these techniques can be used to accurately estimate the
rate obtained for a source that produces bits with varying (but known) distributions. The rate estimates
produced are asymptotic as the input sequence length becomes large, i.e., the cost of bits used to flush
the encoder is not included. We examine the cost of flush bits in Section IV.D.

The rate estimation techniques do not usually give exact results, in part because bits arriving in a
bin may not be independent even when the source bits are independent. This dependence can arise, for
example, when processing a single codeword results in more than one output bit being placed in the same
bin. Exact rate expressions can be obtained in certain cases; for example, R1(p) = 1 exactly since bits in
the first bin are uncoded, and both techniques compute Rj(p) exactly for any bin j that maps all output
bits to the first bin. In practice, both techniques usually give quite good estimates.

As a first step for either technique, at each non-terminal node in each tree we need to compute η,
the expected number of output bits at the node per input bit to the bin, and q, the probability that an
output bit from the node is zero. Both quantities are functions of p, the probability-of-zero at the input
to the bin. To compute η, we determine the expected number of output bits at the node per codeword
and divide this by the expected codeword length.

Example 4. Consider the tree for bin 4 of coder design C5, shown again in Fig. 14. The codeword
set is {1, 01, 001, 000}, and the expected codeword length is

L = (1− p) + 2p(1− p) + 3p2(1− p) + 3p3 = 1 + p+ p2

Each codeword produces one output bit at node a, so the expected number of output bits per input bit
at this node is η = 1/L, and the probability that the output bit at node a is a zero is p3. So at node a we
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have the pair (η, q) =
(
1/[1 + p+ p2], p3

)
. A codeword produces an output bit at node b with probability

1−p3, so the expected number of output bits per input bit at node b is (1−p3)/L = 1−p. The probability
that an output bit produced at node b is zero is equal to (1 + p)/(1 + p + p2). After performing similar
calculations for node c and for the trees for bins 2 and 3 of coder design C5, we arrive at the (η, q) pairs
shown in Fig. 15. 4
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Fig. 14.  The tree for bin 4
of coder design C5.
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Fig. 15.  Expected number of output bits per input bit and probability that an output bit is zero, at the non-terminal
nodes of three of the trees used in coder design C5:  (a) bin 2, (b) bin 3, and (c) bin 4.

A. First Method for Rate Estimation

In our first method of rate estimation, we estimate Rj(p) from the estimates for R1(p), R2(p), · · ·,
Rj−1(p). For non-terminal node k of the tree for bin j, let ηk(p) denote the expected number of output
bits per input bit, qk(p) denote the probability-of-zero of these bits, and Bk denote the destination bin
of these bits. We use the estimate

Rj(p) =


∑
k

ηk(p)RBk
(
qk(p)

)
, if j > 1

1, if j = 1
(6)

where the sum is over all non-terminal nodes in the tree.

Example 5. We compute an estimate of R4(p) for coder design C5, making use of the (η, q) pairs
exhibited in Fig. 15. We begin with R1(p) = 1. Next we estimate

R2(p) =
1

1 + p
R1(p2) + (1− p)R1

(
1

1 + p

)
= (1− p)

(
1 +

1
1− p2

)

Similarly, for bin 3:
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R3(p) =
1

1 + p
R2(p2) + (1− p)R1

(
1

1 + p

)
= (1− p)

(
2 +

1
1− p4

)

and finally for bin 4:

R4(p) =
1

1 + p+ p2
R3(p3) + (1− p)R2

(
1 + p

1 + p+ p2

)
+

1− p2

1 + p+ p2
R1

(
1

1 + p

)

= (1− p)
(

4− 1 + p

2 + 2p+ p2
+

1
1− p12

)
4

We can use a modification of this rate estimation technique to derive a compact recursive formula
for an estimate of redundancy, where the redundancy ρj(p) is the number of output bits per input bit
in excess of the binary entropy function. For bin 1 the redundancy is 1 − H2(p), and for j > 1 the
redundancy for bin j is approximately

ρj(p) = Rj(p)−H2(p) =
∑
k

ηk(p)
[
RBk

(
qk(p)

)
−H2

(
qk(p)

)]
=
∑
k

ηk(p)ρBk
(
qk(p)

)
(7)

where we have used Eqs. (3) and (6). This expression motivates the coder design procedure described in
Section V.A.

B. Second Method for Rate Estimation

Our second technique for estimating Rj(p) is based on Expression (5). For each bin we produce a list
of (λ, q) pairs, where in each pair λ represents an expected number of bits per source bit and q is the
corresponding probability-of-zero. Initially each list is empty except the list for bin j, which contains the
pair (1, p).

We now let ` step through bin indices, starting with ` = j and working down through ` = 2. At a
given step, suppose the list for bin ` contains pairs (λ1, q1), (λ2, q2), · · ·, (λm, qm). We compute the total
expected number of bits in the bin per source bit,

Λ` =
m∑
i=1

λi (8)

and the average probability-of-zero in the bin,

Q` =
1
Λ`

m∑
i=1

qiλi

Treating the input to bin ` as Λ` bits, each with probability-of-zero Q`, we compute the expected number
of bits λ′k and associated probability-of-zero q′k at each non-terminal node k in the tree and append (λ′k, q

′
k)

to the list for the bin to which the output bit associated with node k is mapped.9 This calculation uses the

9 If bits generated at node k are assigned to bin 1, then computation of q′k is not necessary.
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originally computed (η, q) pairs associated with the non-terminal nodes in the tree. Then we decrement
` to move to the next bin.

After we finish stepping through the bins, our estimate of Rj(p) equals Λ1, the total expected number
of bits in the first bin computed using Expression (8).

This technique can easily be adapted to estimate the rate associated with a source that produces
bits with varying (but known) distributions. For a source that produces bits with probabilities-of-zero
φ1, · · · , φk with frequencies f1, · · · , fk, we simply initialize our lists so that each pair (fi, φi) is put in the
list for the bin to which probability φi is mapped.

Example 6. To illustrate this rate estimation method, we compute again an estimate of R4(p)
for coder design C5. Initially the list for bin 4 is {(1, p)}, and the lists for all other bins are empty.
From Fig. 15(c) we see that this produces pairs

(
1/[1 + p+ p2], p3

)
,
(
1− p, [1 + p]/[1 + p+ p2]

)
, and(

[1− p2]/[1 + p+ p2], 1/[1 + p]
)

in bins 3, 2, and 1, respectively. The updated lists are

bin 3 :
{(

1
1 + p+ p2

, p3

)}

bin 2 :
{(

1− p, 1 + p

1 + p+ p2

)}

bin 1 :
{(

1− p2

1 + p+ p2
,

1
1 + p

)}

Moving to bin 3, we find a total expected number of bits Λ3 = 1/(1 + p+ p2) and probability-of-
zero Q3 = p3. Bin 3 produces [see Fig. 15(b)] pairs

(
Λ3/[1 +Q3], Q2

3

)
=
(
[1− p]/[1− p6], p6

)
and

(Λ3[1−Q3], 1/[1 +Q3]) =
(
1− p, 1/[1 + p3]

)
in bins 2 and 1, respectively. We add these pairs to the

appropriate lists:

bin 2 :
{(

1− p, 1 + p

1 + p+ p2

)
,

(
1− p
1− p6

, p6

)}

bin 1 :
{(

1− p2

1 + p+ p2
,

1
1 + p

)
,

(
1− p, 1

1 + p3

)}

Next, in bin 2 we compute

Λ2 = 1− p+
1− p
1− p6

= (1− p)
(

1 +
1

1− p6

)

Q2 =
1
Λ2

(
1− p2

1 + p+ p2
+

(1− p)p6

1− p6

)
=

1− p2 + p3 − p5 + p6

2− p6
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From Fig. 15(a) we see that bin 2 produces pairs

(
Λ2

1 +Q2
, Q2

2

)
=
(

(1− p)(2− p6)2

(1− p6)(3− p2 + p3 − p5)
,
(1− p2 + p3 − p5 + p6)2

(2− p6)2

)

and

(
Λ2(1−Q2),

1
1 +Q2

)
=
(

(1− p)(1 + p+ 2p2)
1 + p+ p2

,
2− p6

3− p2 + p3 − p5

)

both in bin 1. So the list for bin 1 becomes

bin 1 :
{(

1− p2

1 + p+ p2
,

1
1 + p

)
,

(
1− p, 1

1 + p3

)
,

(
(1− p)(2− p6)2

(1− p6)(3− p2 + p3 − p5)
,
(1− p2 + p3 − p5 + p6)2

(2− p6)2

)
,

(
(1− p)(1 + p+ 2p2)

1 + p+ p2
,

2− p6

3− p2 + p3 − p5

)}

The rate is estimated as the total expected number of bits in bin 1:

R4(p) =
1− p2

1 + p+ p2
+ 1− p+

(1− p)(2− p6)2

(1− p6)(3− p2 + p3 − p5)
+

(1− p)(1 + p+ 2p2)
1 + p+ p2

= (1− p)
(

3 +
(2− p6)2

(3− p2 + p3 − p5)(1− p6)

)

For p ∈ (1/2, 1), this estimate is slightly lower than the estimate computed using the first technique. 4

C. Performance Example

The rate estimation techniques of Sections IV.A and IV.B allow computation of estimates of the
redundancy ρj(p) = Rj(p) −H2(p) for each bin j of a coder. We typically plot redundancy for a coder
design as a function of p, under the assumption that source bits are mapped to the bin that minimizes
the estimated rate. Generally, each Rj(p) is nearly linear in p, so minj Rj(p) is nearly piecewise linear.
The rate function minj Rj(p) tends to hug the binary entropy curve, as illustrated in Fig. 16, resulting
in a redundancy curve with a sawtooth appearance.

To demonstrate the accuracy of the estimation techniques, we have estimated redundancy for two
coder designs: C5, and a 23-bin coder that uses only Tm,m+1 trees. In addition, we have measured the
actual redundancy by simulation. Figures 17 and 18 show the results. The results of the two estimation
techniques are indistinguishable at the scale of the figures and are in close agreement with the measured
redundancy. For bins 1–3 of coder design C5, both redundancy estimates can be shown to be equal to
the actual redundancy.

We remark that plots of redundancy versus p may be misleading when source bits entering a bin do
not all have the same probability-of-zero. Since H2(p) is convex ∩, the average entropy of these incoming
bits will be less than the binary entropy function evaluated at their average probability-of-zero. Thus,
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Fig. 16.  Rate functions Rj ( p ) and
binary entropy H 2 ( p ).
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Fig. 17.  Estimated (solid curve) and measured (individual points)
redundancy for coder design C5.  Each point was generated using
500 sequences, each of length 220 bits.
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redundancy for a 23-bin coder.  Each point was generated using
1000 sequences, each of length 220 bits.
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the redundancy could be larger than one might expect from examining a plot of redundancy versus p; see
Fig. 19. In theory, this redundancy could be larger than the redundancy at any fixed probability-of-zero
in the bin.

In practice, the discrepancy is usually quite small since the intervals associated with bins are generally
narrow. However, we note that a 2-bin coder with a very large tree derived from a universal source code
would appear from a redundancy plot to give very low redundancy, when in fact the redundancy would
be high if incoming bits had widely varying probabilities-of-zero.
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Fig. 19. If bits arriving in bin j have probabilities-
of-zero p1 and p2, then the entropy, H, and rate
achieved, R, might be as shown.  The associat-
ed redundancy ρ could be larger than might be
expected from a graph that shows redundancy
as a function of p.

D. Rate Cost of Flush Bits

Now that we have methods of estimating the asymptotic rate of a given coder design, we turn to the
non-asymptotic component of rate: the contribution due to flush bits. The cost, in bits of output, of
flush bits is usually quite small unless the number of bins in the coder is very large; thus, unless the
source sequence is short, the contribution to rate is generally minimal. If one wishes to compress several
short sequences of bits independently, the cost of flush bits can become important. This might arise as
a method of accommodating a constraint in encoder memory; note, however, that in [1] we present an
alternate method of handling encoder memory limitations.

For a non-recursive coder and a given source model, we can analytically compute the probability
distribution on codeword prefixes remaining in each bin before flush bits are added. This allows us to
calculate the exact expected rate cost of flush bits, which is simply the sum of the expected cost in each
bin. This calculation is tractable because no interactions between bins arise.

For a recursive coder, calculating the expected rate cost of flush bits is more difficult, in part because
the recursive nature of the coder makes it very difficult to model the stream of bits arriving in each bin.
A simpler alternative is to compute the rate cost approximately, by assuming that all bits arriving in a
bin have the same nominal probability-of-zero and calculating the distribution of codeword prefixes and
the bit cost of flush bits based on this probability.

Another alternative is to measure the bit cost of flush bits by simulation, measuring the encoded length
for moderate-length source sequences and subtracting the asymptotic component. For most sources, we
expect the distribution of codeword prefixes in the encoder before flushing to approach some steady-state
distribution as the number of bits encoded becomes large. Thus, we anticipate that the expected cost of
flush bits approaches a constant as the sequence length becomes long.
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As an example, we have used this simulation method to find the average cost of flush bits for the 6-bin
and 9-bin coders specified in Table C-2 of Appendix C when for each bit the probability-of-zero is chosen
randomly according to a given distribution. We used a uniform distribution over [1/2, 1] and a triangular
distribution over [1/2, 1] with the peak at 1. The results are shown in Fig. 20. After some erratic behavior
for very short sequences, the bit cost does indeed appear to approach a constant. This constant appears
to have only a small dependence on the distribution from which the probabilities-of-zero were selected; we
would expect this to be the case among distributions that cause all bins to be used. The small difference
that does occur can be largely attributed to the fact that the different distributions give rise to slightly
different average probabilities-of-zero within bins.
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Fig. 20.  Cost, in bits per encoded sequence, of the flush bits
needed to complete encoding for the 6-bin and 9-bin coders spec-
ified in Table C-2 of Appendix C.  The probability-of-zero of each
bit is independently chosen from the indicated distribution.  Each
point was generated using 200,000 sequences.

V. Designing Coders

In this section, we describe a practical procedure for finding a coder design whose redundancy meets
a given goal, and we exhibit some coder designs obtained using this design procedure.

A. A Coder Design Procedure

As discussed in Section IV, evaluating the exact redundancy of a given coder design is a difficult
problem. Thus, we consider only the redundancy obtained for sources with a fixed probability-of-zero,
and we rely on the rate estimates of Section IV, which in practice are quite close to the rates achieved.

The redundancy goal is specified by a quantity ∆ that represents the maximum allowed asymptotic
redundancy, in bits per source bit. The procedure also requires a set of candidate trees to be used in
the coder. In this context, the trees do not include assignments of bin indices to non-terminal nodes or
output bit labels to branches; these assignments will be made as part of the design procedure. To use the
design procedure with arbitrarily small values of ∆, the set of candidate trees should have the property
that for any p ∈ (1/2, 1) some tree in the set is useful at p—that is, the set contains a complete family of
useful trees. In practice, it is often convenient to limit consideration to a finite candidate tree set.

Each bin j will have associated with it an interval specified by the left endpoint zj−1 and right endpoint
zj . For j > 1, a tree will also be associated with bin j. No design work is required for bin 1, since z0 = 1/2
and bin 1 is uncoded. To design the rest of the coder, we add bin specifications in order of increasing

27



bin index by selecting a tree, assigning bin indices and output bit labels to the tree, and computing the
left endpoint of the bin’s interval. For example, Fig. 21 shows a case where the coder design has been
specified for the first three bins, and our redundancy target ∆ is met for source probabilities-of-zero less
than p∗. The next task is to specify a tree that meets the redundancy target for an interval that includes
p∗; as a result we will have z3 ≤ p∗.
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C
Y

z 1 z 2 p *

∆

Fig. 21.  Redundancy of a coder after
specifying trees for bins 2 and 3.

Given that the first j − 1 bins of the coder satisfy the redundancy target up to probability-of-zero p∗,
the tree for bin j needs to yield redundancy of at most ∆ at p∗. This can be accomplished by selecting
a tree that is useful at p∗ and, treating the input bits to the tree as all having probability-of-zero p∗,
assigning branch labels so that each output bit is more likely to be a 0 than a 1. Then, at each non-
terminal node, we assign the output bin index ` so that the probability-of-zero of the output bit is in
the interval [z`−1, z`) (for this assignment we temporarily let zj = p∗). This construction maps output
bits to bins in regions where the redundancy is less than the target ∆, and so, using the redundancy
approximation of Eq. (7), the redundancy at p∗ satisfies

ρj(p∗) =
∑
k

ηk(p∗)ρBk(qk(p
∗)) <

∑
k

ηk(p∗)∆ < ∆

where ηk(p∗) is the expected number of output bits generated at non-terminal node k for each input bit,
qk(p∗) is the corresponding probability-of-zero, and the sums are over all non-terminal nodes. This last
inequality is due to Lemma 1 of Section III. Thus, to the extent that the approximation in Eq. (7) is
accurate, the tree we have selected for the new bin produces redundancy less than ∆ at p∗. Since the rate
function for each bin is continuous, we have extended the range where the coder meets the redundancy
target.

The above procedure can always be used to find one or more trees (labeled with output bits and
destination bins) that extend the range over which the coder meets the redundancy target. However,
additional trees, or trees with alternate output bit and bin assignments, might also meet the redundancy
goal at p∗. A possible method of finding such trees is to select a tree and assign bins and output bits as
in the above procedure, but using a target probability somewhat larger than p∗.

A reasonable method of choosing among several trees that meet the redundancy goal at p∗ is to pick
the tree that extends the useful range of the coder the furthest. The procedure is then essentially a greedy
algorithm, and there is no guarantee that the number of bins in the coder will be minimized. In addition,
the design procedure does not give consideration to minimizing encoding or decoding complexity, which
may be quite different from minimizing the number of bins.
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B. Coder Designs

We have used the method of Section V.A to find several coder designs, many of which appear to be
promising. A group of coder designs was generated with the trees {Tm,m+1}∞m=1 described in Section III.A
as the set of candidate trees. Table 3 indicates some parameters and measures of redundancy of these
coder designs, and Fig. 22 contains a plot of redundancy versus probability-of-zero for some of them.
Table C-1 in Appendix C gives complete specifications.

Table 3. Parameters and redundancies of some coder designs
that use only trees from {{{TTT m,m+1}}}m=1

∞∞∞ .

Maximum Typical Number of terminal
Bins

redundancya redundancyb nodes in the trees

2 1/2 0.083 3

3 1/4 0.029 3,3

4 1/8 0.015 3,3,3

5 1/16 0.012 3,3,3,3

6 0.041 0.011 3,3,3,3,3

7 1/36 0.0067 5,5,3,3,3,3

8 0.019 0.0071 5,5,5,3,3,3,3

9 0.014 0.0060 5,5,5,3,3,3,3,3

10 3/256 0.0048 7,5,3,5,3,3,3,3,3

11 0.010 0.0043 7,5,5,3,5,3,3,3,3,3

12 0.0080 0.0034 7,3,3,5,3,3,3,3,3,3,3

a “Maximum redundancy” refers to the maximum estimated redun-
dancy among sources having a fixed probability-of-zero, given that
the source bits are mapped to the bin that minimizes redundancy.

b “Typical redundancy” refers to the measured redundancy for a source
with pi uniformly distributed over [0, 1].
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Fig. 22.  Redundancy as a function of probability-of-zero for some
coder designs from Table 3.
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For a given number of bins, we can obtain lower redundancy when we augment our set of candidate trees
to include some trees that perform runlength coding. Table 4 indicates some parameters and measures of
redundancy for some of the resulting designs obtained when we use this larger set of candidate trees, and
Fig. 23 contains a plot of redundancy versus probability-of-zero for some of these coder designs. Table C-2
in Appendix C gives complete specifications.

Table 4. Parameters and redundancies of some coder designs that use
trees from {{{TTT m,m+1}}}m=1

∞∞∞ and certain trees that perform runlength coding.

Maximum Typical Number of terminal
Bins

redundancya redundancyb nodes in the trees

2 1/6 0.051 7

3 0.073 0.025 4,7

4 0.041 0.014 3,6,7

5 0.026 0.0084 5,5,8,7

6 0.018 0.0068 5,5,7,11,7

7 0.014 0.0055 5,5,6,8,4,7

8 0.010 0.0046 7,5,5,4,8,8,7

9 0.0090 0.0041 7,3,5,4,6,3,10,6

10 0.0071 0.0032 7,5,3,5,5,6,7,9,6

11 0.0065 0.0035 9,5,3,4,3,5,11,9,8,7

12 0.0055 0.0027 9,7,5,3,5,7,6,5,4,6,6

a “Maximum redundancy” refers to the maximum estimated redundancy
among sources having a fixed probability-of-zero, given that the source
bits are mapped to the bin that minimizes redundancy.

b “Typical redundancy” refers to the measured redundancy for a source
with pi uniformly distributed over [0, 1].
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Fig. 23.  Redundancy as a function of probability-of-zero for some
coder designs from Table 4.
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We observe from Tables 3 and 4 that we can achieve low redundancy with coder designs that use
a moderate number of bins and relatively small trees. As we’ll see in Section VI, implementing coder
designs of similar or even somewhat greater complexity is quite practical.

VI. Encoding and Decoding Speed

We now examine the encoding and decoding speeds obtained from coders of various compression
efficiencies. We have measured the encoding and decoding speeds of software implementations of our
coding technique and of arithmetic coding. We have also measured the redundancy achieved by the coders.
All timing tests were performed on a Sun Ultra Enterprise with a 167-MHz UltraSPARC processor.

For our test source sequences, we generated sequences of 500,000 probability values pi from a uniform
distribution on [0, 1] and produced random bits bi according to these values. We compute bin assignments
outside of the timing loop as the optimal assignment given pi to isolate the speed and efficiency of the
actual coding from the source modeling.

For comparison, we also evaluated the “shift/add” binary arithmetic coder from [19] with b = 16
and several different values of f (see [19] for definitions of these parameters). The arithmetic coder was
modified to be similarly isolated from the modeling; bit probabilities were supplied in a form convenient
to the coder. We selected the coder from [19] because it is reasonably fast, it is widely used by other
researchers, the source code is publicly available, and it was relatively easy to isolate the coder from the
source modeling. Other arithmetic coder implementations (e.g., [18]) may be somewhat faster.

Figure 24 shows redundancy versus decoding speed for two recursive coder designs as well as the
arithmetic coder. The recursive coder designs are the 6-bin coder specified in Table C-3 of Appendix C
and the 10-bin coder specified in Table C-2 of Appendix C. (The 10-bin coder also appears in Table 4 and
Fig. 23.) The 6-bin coder design yields a fast decoder in part because the coder design is recursive only in
the last bin; note, however, that our software does not explicitly take advantage of this property. Figure 24
shows that recursive interleaved entropy coding can offer a noticeable improvement in decoding speed
over arithmetic coding. For many data compression applications, e.g., image retrieval from databases,
decoding speed is much more important than encoding speed, and recursive interleaved entropy coding
appears to be an attractive alternative to arithmetic coding in such a situation.

R
E

D
U

N
D

A
N

C
Y

, b
its

/s
ou

rc
e 

bi
t

DECODING SPEED, Mbit/s

2.0 3.0 3.51.5

10−3

10−5

10−2

10−1

f = 9

f = 10

f = 11

f = 12

f = 13

f = 14

10 BINS

6 BINS

ARITHMETIC CODING

RECURSIVE INTERLEAVED
CODING

2.5

10−4
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For spacecraft applications, however, encoding speed is paramount. Figure 25 shows redundancy versus
encoding speed for the two recursive coder designs tested above, for two non-recursive coder designs with
a specialized encoder, and for the arithmetic coder. We observe that the recursive coders offer encoding
speed comparable to that of arithmetic coding. For a recursive coder design, we expect that encoding is
inherently slower than decoding.

For the non-recursive coder designs in Fig. 25, encoding speed is measured for an encoder specifically
tailored to exploit non-recursive designs. The non-recursive designs are specified in Table C-3 of Ap-
pendix C. We see from the figure that the non-recursive coder designs shown here provide encoding that
is more than twice as fast as that of the arithmetic coder. As noted earlier, non-recursive interleaved
entropy coders have been investigated in [5–7]; however, previous implementations have used less general
component codes than our implementations, and the potential for fast encoding (and decoding) does not
appear to have been fully appreciated.

A non-recursive coder design that meets a given redundancy target requires larger trees, and usually a
larger number of bins, than a recursive design. For example, achieving low redundancy when the source
has probability-of-zero close to one requires the use of very large trees in non-recursive coders, but not
in recursive coders. However, at the present stage of development, non-recursive coders appear to have
an advantage when encoding speed is our primary concern.

These results give some indication of the performance achievable using recursive and non-recursive
interleaved entropy coding. We have good reason to be optimistic that even better coder designs are
possible. First, note that our coder design procedure essentially ignores encoding and decoding complexity.
Second, recall from Section III.C that the number of useful trees grows very quickly as we increase the
size of the tree and from Section I.B that good coder designs may include trees that are not useful. Thus,
the number of potential coder designs quickly becomes large as we increase the size of the candidate trees.
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VII. Conclusion

We have presented a new entropy coding technique that provides the same functionality as binary
arithmetic coding. The technique accommodates an adaptive probability estimate, which allows a data
compression algorithm to exploit sophisticated source models, enabling efficient compression. The tech-
nique can in theory achieve arbitrarily small asymptotic redundancy as coder designs increase in com-
plexity. We have described a rate estimation technique and a practical coder design procedure. Using the
design procedure, we have found relatively simple coder designs that yield efficient compression. Com-
pared to arithmetic coding, our technique provides competitive encoding speed and noticeably better
decoding speed. For the special case of a non-recursive coder design, we can achieve significantly faster
encoding than with arithmetic coding.

We see that recursive interleaved entropy coding appears to be a viable alternative to arithmetic
coding. As recursive interleaved entropy coding is still a very new technique, it is reasonable to expect
further improvements, perhaps from both discovering better coder designs and developing algorithmic
improvements. By comparison, arithmetic coding has been maturing for over two decades. Our encoding
speed tests of non-recursive interleaved entropy coding indicate that the extent of the benefits of that
technique has not been previously appreciated.

Several interesting directions for future research remain. Although we have exhibited a practical coder
design procedure, it is likely that this procedure could be improved upon, either through refinements or
with a fundamentally different procedure. In particular, it may be possible to determine good heuristics
for finding fast and efficient coder designs for a given application. A related research task is to better
characterize the various aspects of complexity of coder designs. Such a characterization might allow
a design procedure to take encoding and decoding speeds into account. In addition, variations in the
underlying encoding and decoding procedures may yield speed improvements. Finally, we would like to
identify trees (whether useful or not) that are well suited for inclusion in coder designs, and we would like
to have a better understanding of useful trees. For example, we would like to identify new (or generalized)
families of useful trees and to find a better characterization of useful trees.
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Appendix A

Useful Regions for a Family of Trees

In this appendix, we prove an extended version of Theorem 1 from Section III. Recall that Theorem 1
identifies, for each Tm,n tree, the region where it is useful.

For each Tm,n tree, there is more than one output-bit labeling that produces a useful tree. For any
pair of bit values A and B, let TABm,n denote the labeling of Tm,n shown in Fig. A-1. We’ll see below that
only the labelings shown in Fig. A-1 with certain choices of A and B produce useful trees. Note that for
tree T 00

m,n the output bits are identical to the input bits except when the input is the all-zeros or all-ones
codeword.

m,n

Fig. A-1.  Output-bit labelings of Tm,n  that, for certain choices of bits A and B, produce useful trees for

(a) m = 1 and (b) m > 1.  The labeled tree is denoted by T AB .

(a)

A

0n

0

1 01
0011

0

A

0n −211

0
B 1

B 0n −11

(b)

A

1
1

1

B 0n

A

0
0

1
1

0
0

001
01

110
10

0
B

1m −20
1m −10

1

0
B 1m

0n −21
B 0n −11

Recall from Section III that for α ∈ [0, 1), γα denotes the real root in the interval (1/2, 1] of p = (1−p)α.
We now state a more complete version of Theorem 1:
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Theorem A-1.

(a) For n ≥ 2, T1,n is useful in the interval (γ1/n, 1):

– T 00
1,n is useful in the interval (γ1/n, 2−1/n].

– T 10
1,n is useful in the interval [2−1/n, 1).

(b) For n ≥ 3, T2,n is useful in the interval (γ2/n, 1):

– T 00
2,n is useful in the interval (γ2/n, γ1/(n−1)].

– T 01
2,n is useful in the interval [γ1/(n−1), βn].

– T 11
2,n is useful in the interval [βn, 1).

Here, for n ≥ 3, βn is the unique zero of 1/2− p+ p2 − pn in the interval (γ2/n, 1).

(c) For n > m ≥ 3, Tm,n is useful in the interval (γm/n, γ(m−2)/(n−2)):

– T 00
m,n is useful in the interval (γm/n, γ(m−1)/(n−1)].

– T 01
m,n is useful in the interval [γ(m−1)/(n−1), γ(m−2)/(n−2)).

To prove Theorem A-1, at each non-terminal node of T 00
m,n we calculate the probability that an output

bit generated is zero. This probability is a function of p, the probability-of-zero of the input bits. We
can determine the useful ranges of Tm,n and its labeled versions from the output bit probabilities-of-zero;
for example, Tm,n is useful when each of these probabilities is in the range (1− p, p), and T 00

m,n is useful
when each is in the range [1/2, p).

For a non-terminal node at depth i in the “upper” section of T 00
m,n, let Φui (p) denote the probability that

a codeword produces an output bit at the node, and let qui (p) denote the probability that an output bit
produced is 0. Let Φ`i(p) and q`i (p) denote similarly defined quantities in the “lower” section of T 00

m,n. (We
omit the dependence on m and n in this notation.) Figure A-2 identifies where each of these quantities
arises in T 00

m,n.

q 1( p ) 0

1

001

1
1

1
1

0

0
0

1
10

0
0 1

1

0
0

01

10
110

1m

0n −11
0n −21

1m −20
1m −10

0n

Φ2( p )

q 2( p )

Φ1( p )

Φm −2( p )

Φm −1( p )

q m −2( p )
q m −1( p )

Φn −1( p )
u

q n −1( p )u

q n −2( p )u

Φn −2( p )uq 2( p )u

Φ2( p )
uq 1( p )u

Φ1( p )
u

Fig. A-2.  Probabilities associated with Tm,n,
illustrated with the output-bit labeling Tm,n ;  Φi ( p )
and Φi ( p ) denote probabilities that a codeword pro-
duces an output bit at the indicated node, and qi ( p )
and qi ( p ) denote probabilities that an output bit
produced is zero.

00 u

u
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We find that

qui (p) = 1− (1− p)pi
Φui (p)

, i = 1, 2, · · · , n− 1

q`i (p) =
p(1− p)i

Φ`i(p)
, i = 1, 2, · · · ,m− 1

Φui (p) = pi − pn + (1− p)m = pi − xm,n(p), i = 1, 2, · · · , n− 1

and

Φ`i(p) = (1− p)i + pn − (1− p)m = (1− p)i + xm,n(p), i = 1, 2, · · · ,m− 1

where

xm,n(p)
4= pn − (1− p)m, 1 ≤ m < n

The function xm,n(p) is increasing in p for p ∈ (0, 1) and has one zero in the range (1/2, 1]. This zero
depends only on the ratio m/n and is equal to γm/n. Thus, for p ∈ [0, 1], xm,n(p) > 0 if and only if
p > γm/n.

We next present some simple results that will be used to prove Theorem A-1.

Lemma A-1. For n > 2, the polynomial 1/2− p+ p2 − pn has exactly one zero in (γ2/n, 1).

Proof. Let y(p) 4= 1/2− p+ p2 − pn. It is straightforward to show that y(γ2/n) > 0 and y(1) < 0, so
y(p) has at least one zero in (γ2/n, 1). To show that y(p) has exactly one zero in this range, it is sufficient
to show that

y′(p) < 0 whenever y(p) ≤ 0 (A-1)

Now, y(p) ≤ 0 implies −pn ≤ −1/2 + p− p2; thus,

py′(p) = − p+ 2p2 − npn

≤ − p+ 2p2 + n

(
−1

2
+ p− p2

)

= − n

2
+ (n− 1)p+ (2− n)p2

This expression is a quadratic polynomial in p whose discriminant is 2− (n− 1)2, which is less than zero
since n > 2. Thus, py′(p) does not change signs while y(p) ≤ 0, so y′(p) is never equal to 0 when y(p) ≤ 0.
But y′(p) ≤ 0 at the point where y(p) first equals 0; thus, Expression (A-1) holds. ❐
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Proposition A-1.

(1) Φu1 (p) > 1− p for p > 1/2.

(2) Φu1 (p) < p if and only if p > γm/n.

(3) For m > 1, qun−1(p) > 1− p if and only if p ∈ (0, γ(m−2)/(n−2)). For m = 1, qun−1(p) > 1− p
for p ∈ (0, 1).

(4) qu1 (p) < p for p < 1.

(5) qui (p) > qui+1(p) for i = 1, 2, · · · , n− 2 and p ∈ (γm/n, 1).

(6) qu1 (p) > q`1(p) for p > 1/2.

(7) q`i (p) > q`i+1(p) for i = 1, 2, · · · ,m− 2 and p > γm/n.

(8) qun−1(p) = q`m−1(p) for m > 1.

(9) qun−2(p) ≥ 1/2 for p ≤ γ(m−2)/(n−2).

(10) q`m−2(p) > qun−2(p) for p ∈ (γm/n, γ(m−2)/(n−2)).

(11) For m ≥ 1, qun−1(p) ≥ 1/2 if and only if p ≤ γ(m−1)/(n−1).

(12) For m > 1, Φu1 (p) > q`1(p) when p > γm/n.

Parts (1) and (6) of Proposition A-1 hold because

2p− 1 = p− (1− p) > pn − (1− p)n > pn − (1− p)m = xm,n(p)

where the first inequality holds because pn − (1− p)n is decreasing in n for p > 1/2. The other parts are
straightforward, though somewhat tedious, to establish.

Proof of Theorem A-1. To establish the useful region of a tree, we must examine the probabilities-
of-zero of the output bits. The probability-of-zero of an output bit generated at the root of T 00

m,n is Φu1 (p),
and the probabilities-of-zero at the other nodes are qu1 (p), qu2 (p), · · · , qun−1(p), and q`1(p), q

`
2(p), · · · , q`m−1(p).

We first establish the region where Tm,n is useful. For m > 1, from parts (1), (2), and (3) of Proposi-
tion A-1, we see that the useful range of Tm,n is contained in the interval (γm/n, γ(m−2)/(n−2)) and that
1− p < Φu1 (p) < p throughout this range. For m > 1 and p ∈ (γm/n, γ(m−2)/(n−2)), combining parts (4),
(5), and (3) of Proposition A-1 gives

p > qu1 (p) > qu2 (p) > · · · > qun−1(p) > 1− p

and parts (4), (6), (7), (8), and (3) of Proposition A-1 give

p > qu1 (p) > q`1(p) > q`2(p) > · · · > q`m−1(p) = qun−1(p) > 1− p

Thus, for m > 1, Tm,n is useful if and only if p ∈ (γm/n, γ(m−2)/(n−2)). Similar reasoning shows that T1,n

is useful if and only if p ∈ (γ1/n, 1).

Next we turn our attention to the output-bit labeling. For m > 1 and p ∈ (γm/n, γ(m−2)/(n−2)),
combining parts (5) and (9) of Proposition A-1 yields

qu1 (p) > qu2 (p) > · · · > qun−2(p) > 1/2
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and parts (7), (10), and (9) of Proposition A-1 give

q`1(p) > q`2(p) > · · · > q`m−2(p) > qun−2(p) > 1/2

Thus, the 0 and 1 output bit labels in Fig. A-1 must be as shown for the labeled tree to be useful, and
we must simply determine the values that A and B can take on at each p. The choice of A = 0 works
whenever Φu1 (p) ≥ 1/2 and B = 0 can be used whenever qun−1(p) ≥ 1/2.

Part (11) of Proposition A-1 implies that when m = 1, B needs to be zero, and when m > 1, B can
be zero if and only if p ≤ γ(m−1)/(n−1).

For m = 1, we find that Φu1 (p) ≥ 1/2, and hence A can be zero if and only if p < 2−1/n. It is easily
shown that 2−1/n > γm/n, so the point p = 2−1/n always occurs in the region where T1,n is useful. Thus,
T 00

1,n and T 10
1,n are the useful labelings of T1,n.

For m > 2 and p ∈ (γm/n, γ(m−2)/(n−2)), combining parts (12), (7), (10), and (9) of Proposition A-1
gives

Φu1 (p) > q`1(p) ≥ q`m−2(p) > qun−2(p) > 1/2

thus, A must be chosen to be zero.

For m = 2, we find that Φu1 (p) ≥ 1/2, and hence A may be zero if and only if 1/2− p+ p2 − pn ≥ 0.
From Lemma A-1, in the range (γ2/n, 1) this function has exactly one zero, βn. It is straightforward to
show that y(γ1/(n−1)) > 0 and y(1) < 0, hence βn > γ1/(n−1). This means that trees T 00

2,n, T
01
2,n, and T 11

2,n

are useful but T 10
2,n is not. ❐

Appendix B

Proof of Theorem 2

In this appendix, we prove Theorem 2 of Section III.B.

Proof. Without loss of generality, we assume each pi is in the range [1/2, 1 − δ]. Choose ω > 0 to
be small enough that 1/(− log2(1/2 + ω)) <

√
1 + ε. The interval [1/2, 1/2 + ω) will correspond to the

uncoded bin.

We now specify the trees to use in the remaining region of interest, [1/2 + ω, 1− δ]. The useful region
for any tree is an open set and, more specifically, is the union of a finite number of open intervals. Since
any open cover of a compact set admits a finite subcover, we can find a finite set U ′ of trees from U such
that for any p ∈ [1/2+ω, 1− δ] there exists a tree from U ′ that is useful at p. Let m be the size of U ′ and
let U1, · · · , Um be the members of U ′. For any p ∈ [1/2+ω, 1−δ] and each i ∈ {1, · · · ,m}, let fi(p) be the
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distance from p to the region in which Ui is not useful. Let Ii = {p ∈ [1/2+ω, 1−δ] : fi(p) = maxj fj(p)}.
It is straightforward to verify that

(1) For each i, Ii is a subset of the useful region of Ui.

(2) Each Ii is the union of a finite number of closed intervals.

(3)
⋃m
i=1 Ii = [1/2 + ω, 1− δ].

Since Ii is a subset of the useful region of the tree Ui, it follows that, for any p ∈ Ii, if the input
probability to the tree Ui is p, then each of the output bit probabilities will be in the range (1 − p, p).
In fact, since Ii is a compact set and the output bit probabilities are continuous functions of p, we can
find ∆i > 0 such that, for any input bit probability p ∈ Ii, the output bit probabilities will all be in the
range (1−p+∆i, p−∆i). In other words, when used at a given point in Ii, the tree Ui moves probability
values closer to 1/2 by at least ∆i.

Let ∆ = min1≤i≤m ∆i and let N = b1/∆c. We will see later that N serves as an upper bound to the
recursion depth of the code design. Let ε′ > 0 be such that (1+ ε′)N ≤

√
1 + ε. Next let ∆′ > 0 be small

enough that

− log2 p

− log2(p+
∆′

2
)
< 1 + ε′

and

− log2(1− p−
∆′

2
)

− log2(1− p)
< 1 + ε′

whenever both p and p+ ∆′/2 are in [1/2 + ω, 1− δ]. Let ∆′′ = min{∆,∆′}.

To complete the coder design, we partition [1/2+ω, 1− δ] into intervals of width at most ∆′′ in such a
way that each interval is a subset of some Ii; it follows from the properties of {Ij}mj=1 that such a partition
can be found. The intervals correspond to bins in the coder design. For each bin we pick an i such that
the bin’s interval is a subset of Ii (as there might be more than one); the bin will use tree Ui. Each bin
is assigned a nominal probability; this is taken to be the probability at the center of its interval. Output
bit probabilities are computed based on the bin’s nominal probability, and output bins are assigned to
be the bins in which the output probabilities fall. By our choice of ∆, output bits are assigned to bins
that are strictly to the left of the bin that produces the output bits.

At this point, we have completely specified a coder design and we turn our attention to bounding the
size of the encoded bitstream. We consider an encoding procedure that, like the encoding procedures
described in Section II.B, loads all source bits into encoder memory before processing, but which also
keeps track of two additional quantities with each bit. The first quantity is the “nominal encoded length”
(in bits) of the bit value. The nominal encoded length for source bit bi is − log2 pi if bi = 0 or − log2(1−pi)
if bi = 1. This value represents, in a sense, the ideal number of output bits that should be produced from
encoding the bit; initially the sum of these values is the sum in Expression (1). The second quantity is
the “ancestry depth” of the bit, which represents the maximum depth to which the ancestry of a bit can
be traced. For source bits, the number is set to 0.

The formation and processing of codewords proceeds normally. Now, however, when a codeword is
processed we also calculate values of the nominal encoded length and ancestry depth for each bit produced.
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Each such bit has an associated probability-of-zero estimate that is computed based on the nominal input
probability of the bin that produces the bit. If we call this probability q, then the nominal encoded length
of the output bit is set to − log2 q or − log2(1 − q), depending on whether the bit is 0 or 1. The bits
produced are each assigned an ancestry depth equal to one more than the maximum ancestry depth of
the bits that formed the codeword.

For example, suppose the tree of Fig. B-1 is used in a bin with nominal probability p. The codewords
are labeled with probabilities based on this nominal probability. The non-terminal nodes are labeled with
output probabilities; if W represents a random input codeword chosen according to the nominal input
bit probabilities, then q1 = Pr(W = 00) and q2 = Pr(W = 1 | W ∈ {1, 01}). Suppose a codeword is
formed in this bin from two bits with probabilities-of-zero p′ and p′′. Before the codeword is processed,
the affected bits with their nominal encoded lengths might appear as shown in Fig. B-2(a). Figure B-2(c)
shows the situation as it might appear after processing. If the bits in Fig. B-2(a) have ancestry depths
of, say, 1 and 0, then both bits in Fig. B-2(c) will have ancestry depth 2.

1

0

1

01

0

1

00

1 − p

p (1 − p )

p 
2

q 2

q 1

Fig. B-1.  An example tree with nominal
codeword probabilities shown.

(c)

(b)

(a)

p' p''

0 : −log2p'

1 : −log2(1 − p'' )

p

0 : −log2p

1 : −log2(1 − p )

q1q2

1 : −log2(1 − q1 )1 : −log2(1 − q2 )

Fig. B-2.  Example of processing a codeword, illustrated with bits and their nominal
encoded lengths.  Probabilities are shown in relation to the intervals corresponding
to bins.  States shown:  (a) initial state, (b) conceptual intermediate state, and (c)
final state.

Conceptually, the processing of codewords can be divided into two steps. First, the nominal encoded
lengths of the input bits are modified to reflect the bin’s nominal input probability. In the second step,
the rest of the processing occurs. From our choice of ∆′, the first step cannot increase the sum of the
nominal encoded lengths of the bits forming the codeword by more than a factor of 1 + ε′. But a key
point is that the second step does not change the total sum of nominal encoded lengths in the encoder:
the product of the probabilities of the input bit values is equal to the product of the probabilities of the
output bit values, from the fact that the output bit probabilities are assigned based on the nominal input
bit probabilities.
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Returning to our example, we show in Fig. B-2(b) the encoder state after the nominal encoded length
modification. In this state, the sum of the nominal encoded lengths is − log2 p(1 − p), which directly
relates to the fact that Pr(W = 01) = p(1− p), where again W is the random codeword formed if input
bits all have probability-of-zero p. But we also have

Pr(W = 01) = Pr(W ∈ {1, 01}) Pr(W = 01 |W ∈ {1, 01})

= (1− q1)(1− q2)

based on the definitions of q1 and q2. Thus, (1− q1)(1− q2) = p(1− p), so − log2(1− q1)− log2(1− q2) =
− log2 p− log2(1− p). Note that probabilities are only used as a tool to establish this equality; the bits
processed are not considered to be random quantities in this analysis.

Suppose that processing a codeword produces a bit with computed probability-of-zero p and ancestry
depth k. Then at least one of the bits forming the codeword must have had ancestry depth k − 1. This
bit must have had a computed probability-of-zero of at least p+∆/2, since the nominal probability of its
bin must have been at least p+ ∆ by our choice of ∆, and the step of modifying the probability changes
it by at most ∆/2. If a bit with ancestry depth k > N is created, then at some point a bit must have
existed with probability-of-zero p+ k∆/2, but from our choice of N ,

p+ k

(
∆
2

)
> p+

(
1
∆

)(
∆
2

)
= p+

1
2
≥ 1

which is a contradiction; thus, no bit can have ancestry number greater than N .

Associate with each bit in the encoder the quantity `/(1+ ε′)k, where ` is the nominal encoded length
of the bit and k is the ancestry depth of the bit. We have shown that, in processing a codeword, the
sum of the nominal lengths of the output bits is less than (1 + ε′) times the nominal lengths of the bits
that formed the codeword. Thus, the sum over all bits of the `/(1 + ε′)k quantity decreases each time
a codeword is processed. Therefore, the sum of the nominal encoded lengths after all bits have reached
the leftmost (uncoded) bin must be less than (1 + ε′)N times the nominal encoded lengths of the original
source bits. Our choice of ε′ implies that this sum must be less than

√
1 + ε

n∑
i=1

{
− log2 pi, if bi = 0
− log2(1− pi), if bi = 1

}

Since the bits that reach the leftmost bin form the encoder’s output, these bits are each encoded with
one bit. By our choice of ω, the nominal encoded length of each bit in this bin is greater than 1/

√
1 + ε.

Thus, by leaving these bits uncoded, any increase in encoded length is by a factor less than
√

1 + ε, and
the final encoded sequence length must be less than (1 + ε) times the original nominal encoded length.

The above analysis has neglected the fact that some bins may be left with incomplete codewords,
requiring that flush bits be used. It is easily seen that the extra bits produced by flushing the encoder
are bounded by some constant; let c be this constant. The number of bits in the entire output sequence
must then be at most the quantity of Expression (1). ❐
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Appendix C

Some Coder Designs

In this appendix, we give specifications for several coder designs that use relatively small trees and a
small number of bins.

We use a shorthand notation to specify trees in a coder design. A terminal node is identified by the
corresponding codeword. Since codeword sets frequently involve long runs of zeros or ones, we use, for
example, 0i to denote a run of i zeros. A non-terminal node is represented by an integer, identifying the
index of the associated bin, followed by an ordered pair containing the representations of the child nodes,
with the node associated with a zero output bit listed first. To specify a complete coder design, we list
the trees for each coded bin. For example, coder design C5 (see Fig. 2) can be written as

2 : 1
(
00, 1(1, 01)

)
3 : 2

(
00, 1(1, 01)

)
4 : 3

(
03, 2

(
1(1, 01), 001

))
5 : 4

(
04, 1

(
1(1, 01), 1(001, 031)

))
Table C-1 lists coder designs that use only the complete family of useful trees described in Section III.A.

Table C-2 lists coder designs that also use runlength trees. Table C-3 lists the coder designs used in
Section VI.
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Table C-1. Some coder designs that use only the TTT m,m+1 trees of Section III.A.

Maximum redundancy is estimated using the second technique for estimating rate.

Maximum Probability
Bins Coder design

redundancy range

2 1/2 2 : 1(00, 1(1, 01)) (0.6180, 1)

3 1/4 2 : 1(00, 1(1, 01)); (0.6180, 0.7862)

3 : 2(00, 1(1, 01)) (0.7862, 1)

4 1/8 2 : 1(00, 1(1, 01)); (0.6180, 0.7862)

3 : 2(00, 1(1, 01)); (0.7862, 0.8867)

4 : 3(00, 1(1, 01)) (0.8867, 1)

5 1/16 2 : 1(00, 1(1, 01)); (0.6180, 0.7862)

3 : 2(00, 1(1, 01)); (0.7862, 0.8867)

4 : 3(00, 1(1, 01)); (0.8867, 0.9416)

5 : 4(00, 1(1, 01)) (0.9416, 1)

6 0.04058 2 : 1(00, 1(1, 01)); (0.6180, 0.7862)

3 : 2(00, 1(1, 01)); (0.7862, 0.8867)

4 : 3(00, 1(1, 01)); (0.8867, 0.9416)

5 : 4(00, 1(1, 01)); (0.9416, 0.9704)

6 : 5(00, 1(1, 01)) (0.9704, 1)

7 1/36 2 : 1(1(03, 10), 1(1(001, 11), 01)); (0.5698, 0.6897)

3 : 2(2(03, 10), 1(2(001, 11), 01)); (0.6897, 0.8010)

4 : 3(00, 1(1, 01)); (0.8010, 0.8950)

5 : 4(00, 1(1, 01)); (0.8950, 0.9460)

6 : 5(00, 1(1, 01)); (0.9460, 0.9726)

7 : 6(00, 1(1, 01)) (0.9726, 1)

8 0.01872 2 : 1(1(03, 10), 1(1(001, 11), 01)); (0.5698, 0.6897)

3 : 2(2(03, 10), 1(2(001, 11), 01)); (0.6897, 0.7826)

4 : 3(3(03, 10), 1(3(001, 11), 01)); (0.7826, 0.8599)

5 : 4(00, 1(1, 01)); (0.8599, 0.9273)

6 : 5(00, 1(1, 01)); (0.9273, 0.9630)

7 : 6(00, 1(1, 01)); (0.9630, 0.9813)

8 : 7(00, 1(1, 01)) (0.9813, 1)

9 0.01412 2 : 1(1(03, 10), 1(1(001, 11), 01)); (0.5698, 0.6897)

3 : 2(2(03, 10), 1(2(001, 11), 01)); (0.6897, 0.7826)

4 : 3(3(03, 10), 1(3(001, 11), 01)); (0.7826, 0.8265)

5 : 3(00, 1(1, 01)); (0.8265, 0.8950)

6 : 5(00, 1(1, 01)); (0.8950, 0.9460)

7 : 6(00, 1(1, 01)); (0.9460, 0.9726)

8 : 7(00, 1(1, 01)); (0.9726, 0.9862)

9 : 8(00, 1(1, 01)) (0.9862, 1)
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Table C-1 (cont’d).

Maximum Probability
Bins Coder design

redundancy range

10 3/256 2 : 1(1(1(04, 110), 10), 1(1(001, 1(031, 13)), 01)); (0.5497, 0.6226)

3 : 1(2(03, 10), 1(2(001, 11), 01)); (0.6226, 0.7172)

4 : 2(00, 2(1, 01)); (0.7172, 0.8075)

5 : 4(4(03, 10), 1(4(001, 11), 01)); (0.8075, 0.8434)

6 : 4(00, 1(1, 01)); (0.8434, 0.9068)

7 : 6(00, 1(1, 01)); (0.9068, 0.9523)

8 : 7(00, 1(1, 01)); (0.9523, 0.9758)

9 : 8(00, 1(1, 01)); (0.9758, 0.9878)

10 : 9(00, 1(1, 01)) (0.9878, 1)

11 0.01046 2 : 1(1(1(04, 110), 10), 1(1(001, 1(031, 13)), 01)); (0.5497, 0.6226)

3 : 1(2(03, 10), 1(2(001, 11), 01)); (0.6226, 0.6994)

4 : 2(3(03, 10), 1(3(001, 11), 01)); (0.6994, 0.7753)

5 : 3(00, 2(1, 01)); (0.7753, 0.8539)

6 : 5(5(03, 10), 1(5(001, 11), 01)); (0.8539, 0.8769)

7 : 5(00, 1(1, 01)); (0.8769, 0.9290)

8 : 7(00, 1(1, 01)); (0.9290, 0.9638)

9 : 8(00, 1(1, 01)); (0.9638, 0.9818)

10 : 9(00, 1(1, 01)); (0.9818, 0.9908)

11 : 10(00, 1(1, 01)) (0.9908, 1)

12 0.007975 2 : 1(1(1(04, 110), 10), 1(1(001, 1(031, 13)), 01)); (0.5497, 0.6180)

3 : 2(2(1, 01), 00); (0.6180, 0.6710)

4 : 1(2(1, 01), 00); (0.6710, 0.7441)

5 : 3(4(03, 10), 1(4(001, 11), 01)); (0.7441, 0.8070)

6 : 4(00, 2(1, 01)); (0.8070, 0.8608)

7 : 5(00, 1(1, 01)); (0.8608, 0.8983)

8 : 6(00, 1(1, 01)); (0.8983, 0.9392)

9 : 8(00, 1(1, 01)); (0.9392, 0.9691)

10 : 9(00, 1(1, 01)); (0.9691, 0.9844)

11 : 10(00, 1(1, 01)); (0.9844, 0.9922)

12 : 11(00, 1(1, 01)) (0.9922, 1)
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Table C-2. Some coder designs that use the TTT m,m+1 trees of Section III.A and runlength trees.

Maximum redundancy is estimated using the second technique for estimating rate.

Maximum Probability
Bins Coder design

redundancy range

2 1/6 2 : 1(1(1(1, 01), 1(1(001, 031), 1(041, 051))), 06) 0.07262

3 0.07262 2 : 1(1(1(01, 001), 1), 03); (0.6573, 0.8960)

3 : 2(06, 1(1(1(001, 031), 1(041, 051)), 1(1, 01))) (0.8960, 1)

4 0.04058 2 : 1(00, 1(1, 01)); (0.61803, 0.8002)

3 : 1(05, 1(2(1(031, 041), 001), 1(1, 01))); (0.8002, 0.9388)

4 : 3(06, 2(1(1(001, 031), 1(041, 051)), 1(1, 01))) (0.9388, 1)

5 0.02551 2 : 1(1(03, 10), 1(1(001, 11), 01)); (0.5698, 0.7124)

3 : 2(2(2(1(001, 031), 01), 1), 04); (0.7124, 0.8497)

4 : 1(1(2(1(01, 001), 1), 1(1(031, 041), 1(051, 061))), 07); (0.8497, 0.9556)

5 : 4(06, 2(1(1(001, 031), 1(041, 051)), 1(1, 01))) (0.9556, 1)

6 0.01783 2 : 1(1(03, 10), 1(1(001, 11), 01)); (0.5698, 0.6897)

3 : 2(2(03, 10), 1(2(001, 11), 01)); (0.6897, 0.7926)

4 : 2(3(3(2(2(1(041, 051), 031), 001), 01), 1), 06); (0.7926, 0.8931)

5 : 1(1(2(1(1(061, 071), 1(081, 091)), 1(041, 051)), (0.8931, 0.9683)

1(1(1, 01), 1(001, 031))), 010);

6 : 5(06, 2(1(1(001, 031), 1(041, 051)), 1(1, 01))) (0.9683, 1)

7 0.01412 2 : 1(1(03, 10), 1(1(001, 11), 01)); (0.5698, 0.6897)

3 : 2(2(03, 10), 1(2(001, 11), 01)); (0.6897, 0.7784)

4 : 2(1(1(1, 01), 2(1(031, 041), 001)), 05); (0.7784, 0.8671)

5 : 1(1(2(1(01, 001), 1), 1(1(031, 041), 1(051, 061))), 07); (0.8671, 0.9424)

6 : 5(03, 2(1(01, 001), 1)); (0.9424, 0.9850)

7 : 6(06, 2(1(1(001, 031), 1(041, 051)), 1(1, 01))) (0.9850, 1)

8 0.01039 2 : 1(1(1(04, 110), 10), 1(1(001, 1(031, 13)), 01)); (0.5497, 0.6226)

3 : 1(2(03, 10), 1(2(001, 11), 01)); (0.6226, 0.7138)

4 : 3(3(2(1, 01), 2(001, 031)), 04); (0.7138, 0.7977)

5 : 2(03, 2(1(01, 001), 1)); (0.7977, 0.8720)

6 : 1(1(3(1(01, 001), 1), 2(1(031, 041), 1(051, 061))), 07); (0.8720, 0.9371)

7 : 4(07, 1(1(1(031, 041), 1(051, 061)), 3(1(01, 001), 1))); (0.9371, 0.9812)

8 : 7(06, 3(1(1(001, 031), 1(041, 051)), 1(1, 01))) (0.9812, 1)

9 0.008968 2 : 1(1(1(04, 110), 10), 1(1(001, 1(031, 13)), 01)); (0.5497, 0.6180)

3 : 2(2(1, 01), 00); (0.6180, 0.6860)

4 : 2(3(03, 10), 1(3(001, 11), 01)); (0.6860, 0.7564)

5 : 1(2(2(01, 001), 1), 03); (0.7564, 0.8337)

6 : 1(1(2(1(031, 041), 001), 1(1, 01)), 05); (0.8337, 0.9045)

7 : 6(00, 1(1, 01)); (0.9045, 0.9568)

8 : 5(09, 1(2(3(1(071, 081), 061), 1(041, 051)), (0.9568, 0.9872)

1(1(1, 01), 1(001, 031))));

9 : 8(05, 2(3(1(031, 041), 001), 1(1, 01))) (0.9872, 1)
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Table C-2 (cont’d).

Maximum Probability
Bins Coder design

redundancy range

10 0.007139 2 : 1(1(1(04, 110), 10), 1(1(001, 1(031, 13)), 01); (0.5497, 0.6008)

3 : 1(1(1(001, 11), 01), 1(03, 10)); (0.6008, 0.6689)

4 : 1(2(1, 01), 00); (0.6689, 0.7462)

5 : 3(3(2(1, 01), 2(001, 031)), 04); (0.7462, 0.8106)

6 : 1(2(1(1, 01), 1(001, 031)), 04); (0.8106, 0.8718)

7 : 2(05, 1(3(1(031, 041), 001), 1(1, 01))); (0.8718, 0.9221)

8 : 4(06, 3(1(1(001, 031), 1(041, 051)), 1(1, 01))); (0.9221, 0.9643)

9 : 6(08, 1(1(1(1, 01), 1(001, 031)), 1(1(041, 051), 1(061, 071)))); (0.9643, 0.9895)

10 : 9(05, 2(3(1(031, 041), 001), 1(1, 01))) (0.9895, 1)

11 0.006484 2 : 1(1(1(1(031, 1(041, 14)), 001), 01), 1(1(1(05, 130), 110), 10)); (0.5386, 0.5779)

3 : 2(2(1(11, 001), 01), 1(10, 03)); (0.5779, 0.6423)

4 : 2(3(1, 01), 00); (0.6423, 0.6999)

5 : 3(2(3(01, 001), 1), 03); (0.6999, 0.7549)

6 : 3(00, 2(1, 01)); (0.7549, 0.8102)

7 : 1(3(2(1, 01), 2(001, 031)), 04); (0.8102, 0.8703)

8 : 4(2(2(1(1, 01), 1(001, 031)), 3(2(1(061, 071), 1(081, 091)), (0.8703, 0.9195)

1(041, 051))), 010);

9 : 3(08, 2(1(1(1, 01), 1(001, 031)), 1(1(041, 051), 1(061, 071)))); (0.9195, 0.9601)

10 : 7(07, 2(1(1(031, 041), 1(051, 061)), 4(1(01, 001), 1))); (0.9601, 0.9884)

11 : 10(06, 4(1(1(001, 031), 1(041, 051)), 1(1, 01))) (0.9884, 1)

12 0.005460 2 : 1(1(1(1(031, 1(041, 14)), 001), 01), 1(1(1(05, 130), 110), 10)); (0.5386, 0.5708)

3 : 1(2(1(001, 2(031, 13)), 01), 1(2(04, 110), 10)); (0.5708, 0.6249)

4 : 1(2(03, 10), 1(2(001, 11), 01)); (0.6249, 0.6763)

5 : 1(3(1, 01), 00); (0.6763, 0.7417)

6 : 4(4(2(1, 01), 2(001, 031)), 04); (0.7417, 0.7875)

7 : 5(1(3(2(001, 031), 2(041, 051)), 2(1, 01)), 06); (0.7875, 0.8420)

8 : 1(1(3(2(031, 041), 001), 2(1, 01)), 05); (0.8420, 0.8957)

9 : 5(04, 1(1(1, 01), 1(001, 031))); (0.8957, 0.9374)

10 : 8(03, 4(1(01, 001), 1)); (0.9374, 0.9711)

11 : 9(05, 3(4(1(031, 041), 001), 1(1, 01))); (0.9711, 0.9915)

12 : 11(05, 3(4(1(031, 041), 001), 1(1, 01))) (0.9915, 1)
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Table C-3. Some coder designs used in Section VI.

Maximum Probability
Bins Coder design

redundancy range

6-bin 1/36 2 : 1(1(03, 01), 1(1(001, 11), 10)); (0.56984, 0.694507)

recursive 3 : 1(1(1(010, 1(041, 011)), 1(001, 031)), 1(1, 05)); (0.694507, 0.797317)

4 : 1(1(1(10, 1(1(11, 0311), 0310)), 1(01, 001)), 04); (0.797317, 0.886762)

5 : 1(1(1(1(01, 001), 1(1, 1(071, 081))), 1(1(031, 041), (0.886762, 0.959425)

1(051, 061))), 09);

6 : 5(04, 1(1(1, 01), 1(001, 031))) (0.959425, 1)

6-bin 1/30 2 : 1(1(03, 01), 1(1(001, 11), 10)); (0.56984, 0.694507)

non-recursive 3 : 1(1(1(010, 1(041, 011)), 1(001, 031)), 1(1, 05)); (0.694507, 0.797317)

4 : 1(1(1(10, 1(1(11, 0311), 0310)), 1(01, 001)), 04); (0.797317, 0.886762)

5 : 1(1(1(1(01, 001), 1(1, 1(071, 081))), 1(1(031, 041), (0.886762, 0.957002)

1(051, 061))), 09);

6 : 1(1(1(1(1(1, 01), 1(1(001, 031), 1(041, 051))), (0.957002, 1)

1(1(1(061, 071), 1(081, 091)), 1(1(0101, 0111),

1(0121, 0131)))), 1(1(1(1(0141, 0151),

1(0161, 0171)), 1(1(0181, 0191), 1(0201, 0211))),

1(1(1(0221, 0231), 1(0241, 0251)),

1(1(0261, 0271), 1(0281, 0291))))), 030)

13-bin 1/31 2 : 1(1(1(1(1(041, 14), 031), 001), 10), (0.538597, 0.56984)

non-recursive 1(01, 1(110, 1(05, 130))));

3 : 1(1(1(001, 1(1(1101, 0311), 13)), 10), (0.56984, 0.618034)

1(01, 1(04, 1(1100, 0310))));

4 : 1(1(03, 01), 1(10, 1(001, 11))); (0.618034, 0.66515)

5 : 1(1(1(010, 1(104, 110)), 1(1(101, 011), (0.66515, 0.724492)

1(1(1031, 13), 1001))), 00);

6 : 1(1(05, 1), 1(1(031, 001), 1(010, 1(041, 011)))); (0.724492, 0.764976)

7 : 1(03, 1(1(001, 010), 1(100, 1(11, 1(011, 101))))); (0.764976, 0.818556)

8 : 1(04, 1(1(001, 01), 1(10, 1(0310, 1(0311, 11))))); (0.818556, 0.852992)

9 : 1(05, 1(1(001, 01), 1(1, 1(041, 031)))); (0.852992, 0.881271)

10 : 1(06, 1(1(01, 1), 1(1(051, 041), 1(031, 001)))); (0.881271, 0.908155)

11 : 1(09, 1(1(1(1, 01), 1(001, 031)), (0.908155, 0.942647)

1(1(041, 051), 1(061, 1(071, 081)))));

12 : 1(015, 1(1(1(1, 1(01, 001)), 1(1(031, 041), (0.942647, 0.968473)

1(051, 061))), 1(1(1(071, 081), 1(091, 0101)),

1(1(0111, 0121), 1(0131, 0141)))));

13 : 1(031, 1(1(1(1(1, 1(01, 001)), 1(1(031, 041), (0.968473, 1)

1(051, 061))), 1(1(1(071, 081), 1(091, 0101)),

1(1(0111, 0121), 1(0131, 0141)))), 1(1(1(1(0151,

0161), 1(0171, 0181)), 1(1(0191, 0201), 1(0211,

0221))), 1(1(1(0231, 0241), 1(0251, 0261)),

1(1(0271, 0281), 1(0291, 0301))))))
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